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Accurate coronary centerline extraction, caliber
estimation and catheter detection in angiographie:

Antonio Hernandez-\Vela, Carlo Gatta, Sergio Escalerarddgual, Victoria Martin-Yuste, Manel
Sabaté, and Petia Radeva

Abstract—Segmentation of coronary arteries in X-Ray registration, especially between X-Ray and CT, is to
angiography is a fundamental tool to evaluate arterial retrieve the 3D shape of the artery from the CT data,
diseases and choose proper coronary treatment. The ac-having a 2D projection and estimate the most probable
curate segmentation of coronary arteries has become angp deformation, as pointed out in several papéis [1]-
important topic for the registration of different modaliti es []. Furthermore, multi-modal registration allows rapid

which allows physicians rapid access to different medical ¢ | t inf fi bout th
imaging information from Computed Tomography (CT) access {0 compiementary information about the coronary

scans or Magnetic Resonance Imaging (MRI). In this ré€ and its lesions cominge.g., from CT scans or
paper, we propose an accurate fully automatic algorithm other imaging modalities. However, vessel segmentation
based on Graph-cuts for vessel centerline extraction, cal- in angiography sequences is still challenging; highly
iber estimation, and catheter detection. Vesselness, gezxic  reliable, fully automatic methods are not established yet.
paths, and a new multi-scale edgeness map are combined to  |n this paper, we use Graph-Cuts (GC) theary [5]-[8]
customize the Graph-cuts approach to the segmentation of {5 model vessel structures and obtain a globally optimal
tubular structures, by means of a global optimization of _the segmentation of the coronary tree in angiography images,
Graph-cuts energy function. Moreover, a novel supervised achieving accurate detection of both the centerline and

learning methodology that integrates local and contextual o . .
information is proposed for automatic catheter detection. the vessel borders. One of the critical issues for GC is

We evaluate the method performance on three datasets the design of proper energy terms to assure optimal anal-
coming from different imaging systems. The method per- Ysis of local image structures and global segmentation
forms as good as the expert observer w.rt. centerline solution. In particular, the original GC definition suffers
detection and caliber estimation. Moreover, the method from the shrinking bias drawbackl![9] since it tends to
discriminates between arteries and catheter with an accu- produce small contours corresponding to the minimal
racy of 96.5%, sensitivity of 72%, and precision of 97.4%.  ~t. Hence, with the original GC energy formulation, it

Index Terms—X-Ray, angiography, centerline, QCA, is not well-suited to segment tubular structures and thin

caliber, catheter, segmentation, Graph-cuts. objects like blood vessels. Moreover, X-Ray images are
characterized by low signal-to-noise ratio, subtle vessel
|. INTRODUCTION appearance, vessel bifurcation, crossing ambiguity, and

o . variable image contrast.
Quantitative Coronary Angiography (QCA) tools are In this work, we propose a novel GC energy functional

used by clinicians on daily basis to eva_luate the dE’iilored to the vessel segmentation problem. The novel
gree of coronary lesions and proceed with the Ioroloeerr1ergy formulation takes into account: (1) the local
intervention. Automatic enhancement and segmentati\(l)g%sel appearance, using a vesselness. measure, (2) the
Of. \'/e'ssel structures has become a basic tO.OI t_o Sl connectivity to other vessel regions, using geodesic

clinicians for a more accurate, fast, and objective pa

. . o ) . aths and, (3) a measure of edgeness based on a new
tient data analysis. The main aim of this multi-mod (3) g
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paper we introduce the following novelties with respedf the result, GC is biased to segment small, isotropic
to the previous MICCAI paper: (a) a new method foregions. This problem can be overcome in different ways.
catheter detection, which completes the methodology \Works like [9], [24] have addressed this problem by
coronary centerline extraction, caliber estimation, andcorporating flux information in the GC framework.
catheter detection in angiographies, from a technologidal[25], the authors include a geodesic distance term to
and clinical point of view, (b) an extended datasethe GC energy function, computed from some strokes
more images have been added to DS1, and a new D8&nually defined by the user as an initialization step
dataset has been introduced to show the robustnesofothe segmentation. Differently than previous methods,
the method proposed, and (c) a complete evaluatiome tailor the GC energy function in such a way that
framework is presented, including new and more detailémhg, thin structures can be easily and automatically
experiments, performance measures, and discussionsagmented. To the best of our knowledge none of the pre-
the results. vious methods incorporates local appearance, geodesic
The rest of the paper is organized as follows: Sepaths, and an edgeness measure in a compact, unified
tion Il presents an overview of the state-of-the art arfthmework.
related work, sectiof Il provides background concepts
used in our method, sectidn]IV presents our proposal, 1. BACKGROUND

sectior\Y explains the validation protocol used to obtain In this section, we overview the GC framework and the

the r_esults, whlch_are Com”.‘e”ted_ in secfioh V1. Fma”%sselness measure, which are employed in our method.
section[VIl contains the discussion, and section IVIII

concludes the paper.
A. Graph-cuts
Il. RELATED WORK Let us definet = (x1,...,x;,...,xp|) the set of pixels

Several methods that exploit photometric and strutsr a given grayscale image P = (1,...,4,...,|P|) the
tural properties of tubular structures have been proposget of indexes of ; AV the set of unordered paifs, j } of
so far [12]-[16]. An excellent review of basic geometneighboring pixels ofP under a4 — (8—) neighborhood
rical features for tubular-like structures can be foursystem, andL = (L,..., L;,..., L;p|) @ binary vector
in [I7]. Nonetheless, in the case of vessel segmentativhose components; specify assignments to pixels=
in angiography sequences, the problem is still challeng- EachL; can be either “fore” or “back” indicating if
ing; highly reliable, fully automatic methods are not est belongs to the foreground or background, respectively.
tablished yet[[18]. Moreover, the accurate vessel calib8C formulation [7] defines the cost functioB (L),
estimation is still a hot topic far from being solved, awhich describes soft constraints imposed on boundary
demonstrated by the scale selection method proposadl region properties of as,
in . An extensive overview of different methods
for[%]ssel extraction can be found in_[20]. Recently, E(L) = U(L) + AB(L), (1)
an interesting approach to vessel segmentation has bgenunary term is denoted as:
proposed in[[21], which fuses local features with local
directional information; unfortunately, the authors da no U(L) = Z Ui(Li), @)
provide a quantitative evaluation of their method. In/[19], i€p
the authors propose a method for scale selection tiaad the boundary term as:
improves the caliber estimation, and show results on the
retinal DRIVE datase{[22] and synthetic images. B(L) = Z Byigy MLi, Lj), (3)

Nonetheless, most works are based on local image lighen
analysis to extract vessels or employ an a-priori modehere the characteristic functidn(LZ;, ;) is 0 if L; =
to help vessel extraction. In contrast, GC techniqug; and 1, otherwise. The unary terbi(L) is defined
is an optimal segmentation tool that combines locabsuming that individual penalties for assigning pikel
and contextual image information analysis by modelirtg “fore” and “back”, (i.e.U;(“fore”) and U;(“back”))
relations between neighboring pixels [€]] [7]._[23]. There given by foreground and background models. In our
goodness of the GC solution depends on the suitabilitgse, the foreground is the vessel denoted by “vess”.
of the energy terms and their reliable computation. Tthe term B(L) comprises the boundary properties of
is worth to mention that GC suffers from the “shrinksegmentation’.. Any By; ;; > 0 should be interpreted
ing bias” problem: since the energy function definitioas a penalty for a discontinuity betweeand;. Finally,
makes it proportional to the length of the boundarthe coefficient\ € R™ specifies the relative importance
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TABLE | - .
WEIGHTS OF EDGES INE. for the deviation from a blob-like structure,
Rp(i,s) = |\, s)]/y/|A\2(3,8)], and the second
edge  weight (cost) for . o 2/
T B T enN order structuredness(i,s) = (/> ;1 o A} (2,5?), where
U:(%back™) i€P,i¢VUB A1(i,s) and X2 (i, s) (|A1] < |X2| ) are the eigenvalues
{1, S} K i€V of the Hessian matrix of imagé computed at scale
0 i€k and locationi. Parameters andc control the sensitivity
Ui(“vess”) ie€P,i¢VUB .
(0,7} 0 icy of the filter to the measureBz andS.
K ieB Differential operators involved in the Hessian com-

putation are well-posed concepts of linear scale-space

_ theory, defined as convolutions with derivatives of Gaus-
of the boundary term against the unary term. The Ggns,

algorithm imposes hard constrains on the segmentation 0 0

- : I(i.s) = s'I(i G(i 6
result by means of the definition of seed points where 5,1 8) = " I(1) x -G (i, 5), (6)
labels are predefined and can not be modified. Th
notations vV P c IP Bc PVAB = 0 re]lelr to w%ereG is the 2-dimensional Gaussian function ahd
the subsets of vessel (our foreground object of intereést)th_e Lmdeber% parameter. ib| | )
and background seeds, respectively. Boykov etlal. | ](('I’)'Ven (g) different possible scales, ies ¢
show how to efficiently compute the global minimuni>" +-5'* 1, EQ. [8) can be evaluated at each of the
of E(L) among all segmentations satisfying the hard Q scales. 'In[[ZB], thg authors estimate the vgsselh’ess
constraintsvi € V, LZ —_ “’U@SS”, Vi € B, LZ — “back”, at every p|Xe|’L as V(’L) = maXSe{8<1> s} V(’L,S).
using a minimum cut algorithm on a graph defined
by nodes and edges, which are image pixels and pixel IV. METHOD
relations, respectively. Let us describe the details of the
graph created to segment an image. A graph=<
T, > is created with node$(], corresponding to pixels
i € P of the image. There are two additional nodes:
the foreground terminal (sourcg€) and the background 5 seed initialization
terminal ( sink7" ), therefore,Y = P U {S,T}. The set ) )
of edges consists of two types of undirected edges: N order to achieve a fully automatic methodology,
links (neighborhood links) ané-links (terminal links). W& exploit the inherent structure (_)f vessels to define
Each pixeli has twot-links {7, S} and{i, T’} connecting vessel seeds —as the foreground object— based on valleys,
it to each terminal. Each pair of neighboring pixéls; } and backgroun(_j seeds based on low probabilities of
in \V is connected by a-link. Without introducing any the vesselness image [26]. In particular, vessel sdeds
ambiguity, ann-link connecting a pair of neighbors correspond to those pixels corresponding to the high-

-----

In this section, we present a fully automatic method
for vessel segmentation based on GC theory.

and j will be denoted by{i, j}, giving, est responses on a multi-local valley detector (multi-
local refers to the case where more than one ridge are
€=N{J{{i 83 {i, 13} (4) connected, in a drainage pattern) with structure tensor,
i€P namelyS;, as described i [27],
GraphgG is completely defined when assigning weights
to the edges in the way described in Tdble I, white- V= {ilS; > Ou}, (7)

1 : B, , . ,
+ maxiep Z]:{z,]}EN {i.3} whereS, ; is the valley response at pixgland®, is a

sensitivity valley threshold.

B. Vesselness
The vesselness measuvd(i, s) is computed as fol-  The packground seeds are the pixels corresponding
lows [2€], to low probabilities in the vesselness imagéi),
0, if \o(i,s) > 0 B ={i|[V(i) <O}, (8)
V(i,s) = _RelGo _8%Gs) . . o
e = l—e 722 |,  otherwise. where©, is a sensitivity vesselness threshold ang)

(5) the vesselness measure at pixeFig. [d(e) shows the
Two measures are used: a geometric ratio bassslection of )V and B seeds for the input image in
on the second order ellipsoid which accountsig.[d(a).
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coordinates of the vessel seeds.
From the se€y; ;, of all possible paths between points
1 andj, we select the one with minimum distance:

Ff{‘i’j} = argminpec{iyj}D(F), 9)

whereI" = {i,...,j} is an arbitrary parametrized
discrete path defined byl'| = R pixels, andD(T") is
the geodesic distance 0f defined as,

D(T) = m(||VI(T (Z INEE ”2) o)

where the quantity|VI;|| is a finite difference approxi-
mation of the image gradient between poifits, x;1),
and the functionm(z) represents the maximum differ-
ence of theR-dimensional vectog, so that

m(z) = r7r12€1>1g |z; — zj]. (11)
The distanceD, as defined in Eq[{10), is normalized
by the length R of the path to make the measure
independent of the path length. Moreover, the distance
is penalized by the maximum differenee(z) of image
gradients within the path to control the gradient varia-
tions and avoid abrupt changes.

The pathI}, ., is computed incrementally using a
standard Dukstra like short-path algorithm. After com-

— === puting the partial patlf;f g in order to select the next

) 0 path pointg* € N, WhereN is the set of 8-neighbor

of ¢, we use the following criterion,
Fig. 1. Method: (a) Input image, (b) Frangi Vesselness map,
(c) Geodesic map, (d) Unary potential: Vesselness-Geodesip, * — aremin D(T*. + 0o D(T , (12
(e) Vessel-Background seeds (in white and black), (f) Bamd 7 gminge,, (D( {Z’Q}) oD Tign)), (12)

potential: Multi-scale edgeness map (darker values cporeb to \where O{q,0} is the Euclidean distance between the

higher.J;"), (9) Final segmentation, centerline estimation, andetath : ; ;
detection (in green, white, and red, respectively), (h) rded ROI Cartesian coordinates of pixejsand £. Once the next

corresponding to blue rectangle in (g), (i) In blue: Vesseensity POINt has been selected, we continue the path only if
variation along blue line in (h); in red: Ground-truth segnagion; D(I“EZ *}) < ©4, where ©, is an X-Ray dependent

in green: Our segmentation. emplrlcally set threshold. Since different geodesic maps
can be found for different initialization pixelg, the
B. Unary term geodesic distance map, for each pixels computed as,
We define the vessel and background models com- D; = min D(T; ;). (13)

bining vesselness map (i) and the geodesic distance
mapD;. Vesselness provides us the probability of tubulatese pixelsi are the centroids of &-means clustering
structures, however some vessel regions, can have lover the Cartesian coordinates of the vessel seeds. In
vessel probabilities. To avoid this problem, we explodther words, the initialization pixelg are used as the
geodesic paths among vessel seeds and use geodsaiting points for the computation of the paihs, until
distance in the definition of a new vesselness-geodesi(I;, q*}) > ©4. Through the iterations of the algorithm
measurel/ G. Let us first introduce the computation ofor each initialization poiny, several pixels are supposed
geodesic paths and geodesic distance map necessarny tge visited. Therefore, every pixelis supposed to be
defineVG. visited at least once, for any of the initialization pixels.
Geodesic distance maplntuitively, the geodesic dis- Finally, when computing the final geodesic distance map
tance map contains the distances of each pixel to a $&t costs obtained from each initialization point are
of centroids of ak-means clustering over the Cartesiamerged using the minimum operator.
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In particular, the map/G for pixel i is computed exits the segmented area. Hi@). 1(g) shows an example of
as the maximum between the vesselness value and dnheextracted centerline in white. Vessel caliber is esti-

normalized “inverse” of the geodesic distance, mated by applying a local Laplacian of Gaussian (LoG)
1 filtering at CLs locations at different scales. The scale
VG, = max <V(¢)’ ’3i+—f‘(’13>> . (14) space computed using’LoG(z,y; o) has a minimum
max( 557 ato = w/2, wherew is the width of the ridge.

where D and (D) correspond to the geodesic distance
map and its mean, respectively. F. Catheter detection.

We initialize the unary potentials at each pixeds, : . .
yp P By merely its appearance, the catheter is not easily

Ui(“vess”) = —In(p(L; = “vess”)), (15) distinguishable from arteries. In order to discriminate
U;(“back”) = —In(p(L; = “back”)). (16) between vessels and catheter, we propose a classification
method based on suitable catheter features, where every
The probability of a pixel to be marked as “vess” igenterline path is considered as a 1-dimensional object in
computed using the vesselness-geodesic medgtfe the 2D image plane. The algorithm is based on the Multi-

p(Li = “vess”) = VG(x;) and the opposite proba-scale stacked sequential learningl[28], which is divided
bility as p(L; = “back”) = 1—p(L; = “vess”). in two steps: first, a point wise classification method
An example of thel’G' map is shown in Fid.11(d). is performed using an Adaboost classifier with decision
stumps, second, contextual information is extracted and
C. Boundary term used as input for another classifier, in order to refine the

We propose an image-dependent multi-scale edgen@@’ious results using contextual information. For each
measure. First, we run the Canny edge detector algoritf@nt of the centerline path, we extract 5 features:
on the image at different threshold levels. Then, we 1) Positionx = (z,y). Configuration of catheter
compute the edge probability at each pixel by averaging and artery in angiography can be learned by our

the edge thresholds for different scales as follows, method.
1 2) Curvature. In order to accurately compute the
J{ = min — Z Ji,0.,59 (17) curvature, we fit a cubic spline to the centerline
L curve [29]. We approximate the curvature at sub-

! ol!

where.J; o, . is the binary edge map using the threshold  Pixel resolution by computing%%.
O, and scales’ for pixel i. If pixel i is labeled as 3) Angular direction. We take advantage of the spline
an edge pixel for most of the threshold levels at a  'epresentation to compute the angular direction at
significant scale, it has a high probability of being an pointx astan .

edge pixel. The final boundary potential over the multi- 4) Caliber. Although the segmentation results provide

scale edgeness map is computedZds;, = J;. An the caliber estimation, we use vesselness mea-
example ofJ* is shown in Fig[L(f). ’ sures|[[26] to describe caliber feature, since we can
(2

similarly compute it in training and test stages.
5) Caliber first order derivative. Finally, caliber varia-

D. Graph-cuts segmentation o L
. _ _ _ tion is useful to discriminate between catheter and
Finally, we apply the min-cuf [23] algorithm in order artery.

to find the segmentation with the minimum energy. _. ) o
Then, once we obtain the segmentation from GC, Weljg.%}sthowsrtgle dn‘ferer:cg of d'Str,'[bl;t;); for_arteryh
keep only the biggest connected component in the firfgC cathetercaliver computed on a set o anglography

segmentation. An example of the final segmentation lDages (first row) and the caliber variation on artery and
shown in green in FigJ1(g) catheter (second row). In Figl 3 results of both steps of

the catheter detection is shown. Result of the point wise

E. Centerline extraction and caliber estimation classifier is displayed on the right-upper image. On the

The CenterLine (CL) is computed as follows: giVerqght-lower image, it can be seen that misclassified pixels

the binary segmentatiod, we compute its distance ™€ correctly classified by means of the stacked classifier.
map M (L). Then, a non-maxima suppression is applied
to find local maxima and a classic ridge transversal
method is applied to connect the local maxima. The ridgeln order to present the results, we describe the mate-
transversal stops when it finds another centerline orrial, methods, and validation protocol of the experiments.

V. EXPERIMENTS
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blindly segmented a total of 41 lesions (12 LADs, 13
Cxs and 16 RCAs) assisted by a semi-automatic method
(QCA-CMS Version 6.0, MEVIS). The experts were

01 asked to manually correct unsatisfactory segmentations.
The required time for the semi-automatic segmentation
plus manual correction of incorrect segmentations is

. ) b " ” ’ ° b ® * 26.6 & 17sec and 26.3 £+ 15 sec for observer 1 and 2,
0z o7 respectively. The images in this dataset present relgtivel
os easy cases in which the degree of the stenosis is not
relevant. Moreover, the only structure that can make the
0 0 segmentation difficult is the diaphragm: the diaphragm
02 boundary can disturb the correct identification of vessels
Nl " [ B boundary, and it could also reduce the image contrast
’ ° . N B ° ’ . ® locally. Figure[4 (a) shows an example image from DS2.
Catheter caliber (pixels) The third dataset (DS3) has been thought as a highly
Fig. 2. First row: artery (left) and catheter (right) caliliéstribution, challenging set of images, with the aim to create a

in pixels. X axis represents the catheter caliber and Y a@psasents dataset which fosters the research on automatic ves-
the corresponding probability of the histogram bins. Secoow:

artery (left) and catheter (right) caliber variation disttion. sel s_egmentation in complex _X'RaY_ angiographies. All
the images have been acquired with patients present-

ing diffused lesions, from real cases of daily clinical
practice. The image can present one or more of the
following characteristics: Severe stenosis, tri-vascula
stenosis, stent(s), sternal wires, pacemaker, pacing wire
and reduced artery staining. This dataset is formed by
40 images from 23 patients, acquired with a SIEMENS
Artis zee, of 17 RCAs, 15 LADs, and 8 Cxs. Two experts
blindly segmented a total of 48 lesions (19 LADs, 9
Cxs and 20 RCAs) assisted by a semi-automatic method

Fig. 3. Catheter detection example. On the right-upper enegsult . ;
of the point wise Adaboost classifier is shown. The rightdoimage, (QCA-CMS Version 6.0, MEVIS). The experts were

corresponds to the result of the stacked classifier. Vessetatheter asked to 'manu'a”y correct Uns?ﬁSfaCtorY segmentatiqns.
are represented in green and red, respectively. The required time for the semi-automatic segmentation

plus manual correction of incorrect segmentations is
39.7 + 17 sec and 32.5 + 29 sec for observer 1 and 2,
respectively. It is interesting to note that, on average, th
We defined three datasets, named DS1, DS2 and D&3e required for the segmentation for the DS3 is more
DS1 is formed by 20 images from 10 patients, acquirgdan the one required for the DS2 (about 10 seconds),
with a single plane Philips INTEGRIS Allura Flat De-showing that the images present much more complicated
tector, of Right Coronary Arteries (RCA). Three expertstructures, requiring more manual correction. Fiduire 4(b)
have blindly annotated —i.e., without seeing the annshows an example image from DS3, where sternal wires
tations from other experts— all the visible centerlines aihd the pacemaker are visible.
the artery tree. The experts also annotated the centerlines
with different labels: “vess”, the arteries that potenyial
can present a clinical intereste. with a caliber of, B- Methods
at least, 1mm; “don’t care”, all other arteries in the We compare our proposed method against a classic
image, which are too small to be of clinical interest; anddge transversal centerline extraction method applied to
“cat”, the catheter guide. This dataset has been mairthe Frangi vesselness result (RT-V), and the GC method
designed to perform the algorithm tuning, the evaluatiamithout our proposed geodesic distance in the unary po-
of centerline extraction and catheter detection. tential, and the multi-scale edgeness map in the boundary
The dataset DS2 is formed by 31 images from 2otential. Furthermore, we also compare the obtained
patients, acquired with a SIEMENS Artis zee, of 1@esults with the Inter-Observer (I0) variability of the
RCAs, 10 Left Anterior Descending arteries (LAD)gexperts GroundTruth (GT). In the case of the proposed
and 11 Circumflex coronary arteries (Cx). Two expertaethod and GC, parametess, O, and\ are tuned via

Probability

A. Material
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Fig. 5. Centerline evaluation results for DS1: sensitilgft), precision (middle), and centerline error (right).
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Fig. 6. Systematic parameter study. The performance ofytbiem

is analyzed for different values of the following paramsteGC

(b) boundary potential weight (a), and sensitivity vesselness thresholds
6, and O, (b).

0.5P,+058,

Fig. 4. Example dataset images from DS2 (a) and DS3 (b).

cross-validation over DS1. GiveN patients, the tning oyists 5 detected CL point in a distance smaller than

is performed using a Leave One Patient Out (LOPQ) . it this happens, this point is considered as a True

methodology by maximizing.5F; + 0.55 in order to  poqiiye (TP). Similarly,P. is computed by checking for
provide a balance between precisidn)and sensitivity o501 getected CL point if there exists a GT centerline

(Sc). Figurel® shows the effect of these three paramet@rs, eighborhood of radius,. The localization error
on the performance of the proposed method. On 0B s then computed as the distance between the points
hand, Figuré16 (a) shows the performance for differepf e getected CL and the nearest point in the GT, as
values of the boundary potential weightthere®, and 5,4 a5 this distance is lower thad.. The parameter

O, are fixed). On the other hand, Figre 6 (b) ShOW§ "has peen experimentally set to 5 pixels to allow
the effect of the vesselness threshoftisand®©, on the 546 |ocalizations; errors. Precision, Sensitivity and

final result Q is fixed in this plot). Having a look at thesethe localization erro€;, have been computed on DS1.
plots, we see tha®;, has an important influence on the

final result. In contrast\ and©, do not seem to be as 2) Caliber: Using the segmentation provided by the
critical as©;, although the correct tuning of them raisesbservers over DS2 and DS3, we approximate two cubic
the performance metric aboves& in the best case. In splines to each segmented artery boundaries. Using these
all experiments; = {0.81,1.09, ...,2.46} mm,b = 0.75, splines, we determine the CL and extract the caliber for
c = 033, 6 = 0.05, ©, € [0.02,0.03,...,0.3], each CL location[[19]. For each point in the GT CL,
s7 €0.5,1,...,5] pixels k = 10. we identify the nearest point in the detected CL and
evaluate the caliber estimation error with two measures:
we compute the signed errd&xD, = D, — D} and its

) absolute value, wher®? is the ground truth caliber in
We propose to validate the output of our proposefijimeters.

method on three main aspects: (1) centerline, (2) caliber
and (3) catheter. 3) Catheter: Catheter detection has been evaluated
1) Centerline: To evaluate the CL detection, we comwith standard machine learning performance measures:
puted the precisiof?., sensitivityS., and the localization Accuracy, Sensitivity, Specificity and Precision. Quanti-
error £;,. To computeP, and S., we define a threshold tative evaluation is performed on the dataset DS1, for
O., which defines the maximal distance between tlvehich observers provided reliable ground truth. Exam-
ground truth CL and the detected CL. To calculate th@es of catheter detection are evaluated in a qualitative
S., we check for every CL point in the GT if thereway on images from DS2 and DS3.

C. Validation protocol
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VI. RESULTS

We divide the results in centerline, caliber, and
catheter estimation evaluation.

Doy [mm]

, N W Ao e N ®

A. Centerline evaluation

Figure[® showsS,., P., and&;, for the 10 variability, ) y
the RT-V, GC, and the proposed method for the datase \
DSHl. The RT-V method has the lowest. and a very R S s R
low P,, while the&; is extremely low; this confirms that o
the vesselness measure is well suited to accurately dete
the CL, but it has the disadvantage to produce many FF
as confirmed by the lowP., and False Negatives (FN)
as shown bys,... A basic GC approach increases béth
and P. while &;, is increased due to inaccurate bordergf
detection using a gray-level based boundary term. Ot ~
proposed method shows the highéstand P., and a )
&r that is very close to RT-V, while actually detecting e
more vessel pixels than both RT-V and GC (higtser ’ Dt [l D, b
less false negatives). It is also interesting to note that th
proposed method has a lowg than the 10 variability
but highersS,: this means that the proposed method still
produces some FPs but tends to detect clinically relevai
arteries in a way that is the “average” of the observers £

@

w

DOV [mm]
N

OUR
D! ) mm
N w s o o N

TABLE I
CALIBER ESTIMATION QUANTITATIVE RESULTS (IN MM).

DS2 DS3 - :
|AD,| AD, |AD.| AD, N RN oL L)
[¢) 0.18+ 0.24 -0.001% 0.3 | 0.18 £ 0.21  0.005% 0.28 RN ! D fm]” !
GC | 0.84+0.74 0.096+ 1.12 | 1.02+ 0.85 0.005+ 1.33
Ours | 049+ 055 -0.1+0.73 | 056+ 0.61  -0.134 0.82 (@) (b)

N

[
\{\
3

Fig. 7. GT and estimated calibers in scatter plots for I0alality
(first row), GC (second row), and Our method (third row) in D&P
TABLE Il and DS3 (b).
SEPARATE QUANTITATIVE RESULTS ONDS2AND DS3: LAD,
RCA AND CX. ERROR|AD,| IS SHOWN(IN MM) .

LAD RCA CX
DS2 | 0.57+ 0.64 0.424+ 0.43 0.52+ 0.62
DS3 | 0.56+ 0.62 0.55+ 0.59 0.59+ 0.71

average absolute error 6f49+0.55 mm and0.564+0.61
B. Caliber evaluation in DS2 and DS3, respectively. Talplel Il shows the caliber
. . . estimation error of our proposed method on DS2 and
Figurel7 shows scatter plots of the callbe_r e.s.t'mat'%]SIS separated by the type of artery; as expected, the
on Fjataset DS2 and DS3 for the 10 varlab!llty, therror is lower for the RCAs. Furthermore, Table Il shows
basic GC, and the proposed method, respectively. The . . . .
ray dashed curve shows the density of points wr?e average signed error, which gives an estimate of the
gray de . “method bias. It is worth to note that for humans the two
the caliber. The basic GC method performs badly, as .
confirmed by the large absolute error®&4 +0.74 mm ata-sets are equally easy to segment, given the very low
in DS2 andi/02io 895 mm in DS3 (see Tablall) while inter-observer variability both in absolute term and bias.
' ’ i ' .~ The proposed method has a little negative bias on both
the proposed method performs much better having an .
ata-sets and provides, as expected, a smaller absolute
at€rror for the data-set DS2. The error increment from DS2

The results are available _ :
to DS3 is lower for our algorithm w.r.t. GC.

www.cvc.uab.es/ahernandez/AccCentExtr.zip.
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TITB-00013-2012.R3 9

important property of the proposed method is its accu-
racy in the centerline detection. The proposed catheter
detection method exploits the power of machine learning
approaches that also considers the neighbor labeling
results to improve the classification. We believe this
approach is far more general than the one proposed in
[21]. Nonetheless, there are several issues that could be
addressed. In many cases, the contrast liquid flux that
moves back in the aorta, can be confused with a thick,
Fig. 8. Qualitative Results for Catheter detection in DS&eB |\ contrasted, artery. Artery overlapping, especially fo
gﬁ:)ev\frt]es] zfegitheter are shown in red, the rest of the deatésl | Apy can result in incorrect segmentation in which the
caliber is overestimated or bifurcations are erroneously
detected.
C. Catheter evaluation It is finally worth to mention that, while in seg-
pfaentation problems, generally, the direct measure of

of accuracy, sensitivity, specificity, and precision. Rissu segmentation accuracy is preferred, in the segmentation

are separated showing the performance of a point-widkarteries the most important thing is to properly detect
Adaboost classification, and the advantage of the J&€ centerline and its caliber. Relying on observer pixel-
of a context-aware classifier. To visually appreciate tY§S€ segmentation could be dangerous since there is a
advantage of using MR-SSL, Figué 3 shows an exafffge inter-observer variability on what arteries sh_ouetdp
ple of catheter classification; the scattered classifinatige9mented and what can be safely omitted. This claim
produced by the point-wise Adaboost is polished by tg confirmed by the 10 statistics in Figutd 5. While

contextual part of the MRSSL. Moreover, Figiite 8 show§€ O precision is very high, Ehe _senfitivity can be
two qualitative results of catheter detection. significant low even using our “indirect” measure. A
direct measurement would show even lower figures for

Table[TV shows the result of catheter detection in ter

TABLE IV the inter-observer variability, which do not correspond
PERFORMANCE OF THE POINTWISE ADABOOST AND THE to the observer ability in defining the centerline and the
MR-SSLCLASSIFICATION FOR CATHETER DETECTIONTHE  artary houndary, as confirmed by the low inter observer
ASTERISK DENOTES THAT THE NULL HYPOTHESIS CAN BE . . . .
REJECTED AT THE5% LEVEL, USING THE -TEST, WHEN error in both Figure[15 (slightly above 1 pixel) and
COMPARING ADABOOST TOMR-SSL. Tables[dl andll (almost no bias and just 0.18 mm
Adaboost MR-SSL average inter-observer error).
Accuracy | 0.9250  0.9456* Regarding the complexity of the algorithm, the com-
gggz:;:‘c’:g 8:3828 %22962 putational cost of the proposed method dsjp| +
Precision | 0.9446 0.9555 ‘l%'logm), the GC algorithm iso(¢||P||c]), whereC' is

the cost of the minimum cut, and the geodesic com-
putation iso(r| + ‘lﬁ—"logm). In terms of absolute time
consuming, the Matlab code of the whole procedure on
a conventional two core computer of 2.6GHz and 8GB
spends an average of 20 seconds per image.

The main goal of this work is to exploit the power
of the Graph-cuts method while, at the same time,
solve the most relevant problems in accurate vessel
segmentation. We tailored GC to the specific goal, facingWe presented a novel segmentation method for X-
several issues. Vesselness-like measures perform po&éy angiography images that takes into account vessel
in the proximity of bifurcations; the proposed unarappearance, artery tree continuity, and borders appear-
potential, thanks to the geodesic component, allows @aace within Graph-cuts. The algorithm has been tested
mitigate this problem, providing connected centerlines three new datasets. Despite being tuned on DS1, the
at bifurcation locations. The proposed boundary termroposed method provided excellent results on DS2 and
thanks to the novel multi-scale edgeness measure, allaye®d results on DS3, showing the inherent robustness
the segmentation to stop at vessel boundaries. Flgurefithe approach. Future lines of research encompass the
(h) clearly shows the ability of the proposed methodse of a high order potential to deal with irregularity
in a complicated gray-level local distribution. Anotheat bifurcations and crossings; a supervised method to

VIl. DISCUSSION

VIIl. CONCLUSION
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optimize the seed selection; and a method to segm@si D. Franchi, P. Gallo, L. Marsili, and G. Placidi, “A sheybased
overlapped arteries based on contrast liquid opacity. segmentation algorithm for x-ray digital subtraction amga-
phy images,’Comput. Methods Prog. Biomed., vol. 94, no. 3,
pp. 267-278, Jun. 2009.

K. Krissian, G. Malandain, N. Ayache, R. Vaillant, and
Y. Trousset, “Model-based detection of tubular structune3d
images,” Computer Vision and Image Understanding, vol. 80,
no. 2, pp. 130 — 171, 2000.

P. Fallavollita and F. Cheriet, “Towards an Automatior@nhary
Artery Segmentation Algorithm,” irEMBS, 2006, pp. 3037—
3040.

H. Mirzaalian and G. Hamarneh, “Vessel scale-selectising
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