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Abstract Edges are key components of any visual scene

to the extent that we can recognise objects merely by

their silhouettes. The human visual system captures

edge information through neurons in the visual cor-

tex that are sensitive to both intensity discontinuities

and particular orientations. The “classical approach”

assumes that these cells are only responsive to the stim-

ulus present within their receptive fields, however, re-

cent studies demonstrate that surrounding regions and

inter-areal feedback connections influence their responses

significantly. In this work we propose a biologically-

inspired edge detection model in which orientation se-

lective neurons are represented through the first deriva-

tive of a Gaussian function resembling double-opponent

cells in the primary visual cortex (V1). In our model we

account for four kinds of receptive field surround, i.e.
full, far, iso- and orthogonal-orientation, whose con-

tributions are contrast-dependant. The output signal

from V1 is pooled in its perpendicular direction by

larger V2 neurons employing a contrast-variant centre-

surround kernel. We further introduce a feedback con-

nection from higher-level visual areas to the lower ones.

The results of our model on three benchmark datasets

show a big improvement compared to the current non-

learning and biologically-inspired state-of-the-art algo-
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rithms while being competitive to the learning-based

methods.
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1 Introduction

Our ability to recognise objects is completely entangled

with our ability to perceive contours (Walther et al,

2011; Papari and Petkov, 2011). The primary and sec-

ondary visual cortices – i.e. V1 and V2 – play a crucial

role in the process of detecting lines, edges, contours,

and boundaries (Loffler, 2008), to such extent that an

injury to these areas can impair a person’s ability to

recognise objects (Zeki, 1993). Furthermore, edges (a
form of image gradient sometimes also referred to as

“boundaries” or “contours”) are indispensable compo-

nents of computer vision algorithms in a wide range of

applications, such as colour constancy (Van De Weijer

et al, 2007), image segmentation (Arbelaez et al, 2011),

document recognition (LeCun et al, 1998) and human

detection (Dalal and Triggs, 2005).

Given their importance, many computational mod-

els have been proposed to detect edges – for a compre-

hensive review refer to (Papari and Petkov, 2011). In its

earliest form a convolutional-based image gradient was

proposed to capture local changes (Prewitt, 1970). Oth-

ers attributed edges to zero-crossing points, therefore

suggesting the Laplacian-of-Gaussian as a suitable op-

erator (Marr and Hildreth, 1980). Previous algorithms

were improved by incorporating non-maximum suppres-

sion and hysteresis thresholding (Canny, 1986). The

greatest challenge faced by these classical methods is

the distinction between authentic boundaries and un-

desired background textures. This issue was partially
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addressed by local smoothing techniques, such as bilat-

eral filtering (Tomasi and Manduchi, 1998) and mean

shift (Comaniciu and Meer, 2002). Thereafter, graph-

based models emerged, e.g. (Felzenszwalb and Hutten-

locher, 2004; Cour et al, 2005), allowing for closure to be

taken into account. More recent frameworks extract rel-

evant cues (e.g. brightness, colour, and texture) feeding

them to machine learning, such as probabilistic boost-

ing tree (Dollar et al, 2006), gradient descent (Arbelaez

et al, 2011) and structured forest (Dollár and Zitnick,

2015). Currently, state-of-the-art algorithms (Kivinen

et al, 2014; Bertasius et al, 2015a; Shen et al, 2015;

Bertasius et al, 2015b; Xie and Tu, 2015) rely heavily

on deep-learning techniques.

Despite their success, learning methods have their

own set of challenges and drawbacks (Domingos, 2012):

(a) their performance might be dataset dependant; (b)

they are computationally demanding since for every sin-

gle pixel a decision must be made (in both training and

testing stages) on whether it corresponds to an edge

or not; and (c) they require extremely large amounts

of data for an effective training procedure. In addition

to these, there is no biological or behavioural evidence

that edge detection is the result of such a laboriously

supervised learning process. On the contrary, biologi-

cal systems compute edges in an unsupervised manner,

starting from low-level features that are modulated by

feedback from higher-level visual areas, e.g. those re-

sponsible for global shape (Loffler, 2008). In line with

that, one of the earliest biologically-inspired edge de-

tection models (MIRAGE) was proposed based on a

combination of the half-wave rectified outputs of all

spatial-frequency-channels that were used as primitives

for spatial analysis (Watt and Morgan, 1985). Another

influential model considered edges as maxima of the

local energy obtained by convolving an image with a

quadrature pair of one-dimensional filters (Morrone and

Burr, 1988). Further, more sophisticated models which

allow variably weighted sums of oriented filters were

introduced by (Georgeson and Meese, 1997). All these

biologically-inspired models were based on the physi-

ology and generally tested against psychophysical data

(such as, edge detection, discrimination or illusion).

More recently, a number of biologically-inspired edge

detection algorithms have evolved computationally to

be tested on large datasets of real-world images with

promising results. A predictive coding and biased com-

petition mechanism was proposed by (Spratling, 2013)

to model the sparsity coding of neurons in V1. Im-

portance of non-classical receptive fields was presented

by (Wei et al, 2013) in a butterfly-shaped inhibition

model operating at multiple spatial scales. Further im-

provement came from (Yang et al, 2013) who explored

imbalanced colour opponency in order to detect lumi-

nance boundaries. The same authors demonstrated em-

ploying the spatial sparseness constraint, typical to V1

neurons, helps to reserve desired fine boundaries while

suppressing unwanted textures (Yang et al, 2015). An-

other improvement in contour detection originated from

introducing multiple features to the classical centre-

surround inhibition common to most cortical neurons

(Yang et al, 2014). Accounting for feedback connections

has also been beneficial, e.g. (Dı́az-Pernas et al, 2014)

extracted edges through oriented Gabor filters accom-

panied with top-down and region enhancement feed-

back layers.

In this article we extend our previous work (Ak-

barinia and Parraga, 2016) to propose a biologically-

inspired edge detection model that incorporates recent

knowledge of the physiological and psychophysical prop-

erties of our visual system. The proposed model is novel

compared to other biologically-inspired methods in four

main aspects: (i) we incorporate a more sophisticated

set of cortical interactions which includes four types of

surround, i.e. full, far, iso- and orthogonal-orientation;

(ii) we account for contrast variation of surround mod-

ulation; (iii) we model V2 neurons that pool signals

from V1 responses over a larger region corresponding

to the centre and neighbouring spatial locations; and

(iv) we consider a fast-conducting feedback connection

from higher visual areas to the lower ones.

Fig. 1 illustrates the flowchart of our framework,

which follows the functional structure of the human

ventral pathway. Our processing starts in the retina,

where the input image is convolved by single oppo-

nent cells and sent though the lateral geniculate nucleus
(LGN) in the form of colour opponent channels (Shap-

ley and Hawken, 2011). These channels are processed by

double-opponent cells in V1 – known to be responsive

to colour edges (Shapley and Hawken, 2011) – whose re-

ceptive field (RF) are modelled through the first deriva-

tive of a Gaussian function (Canny, 1986). To con-

sider the RF surround: we define a short range circular

(isotropic) region corresponding to full surround (Lof-

fler, 2008), long range iso- and orthogonal-orientation

surrounds along the primary and secondary axes of the

RF (Field et al, 2014), and we model far surround

via feedback connections to enhance the saliency of

edge features. All these interactions are inversely de-

pendant on the contrast of the RF centre (Shushruth

et al, 2009). The output signal from V1 is pooled at V2

by a contrast-variant centre-surround mechanism ap-

plied orthogonally to the preferred direction of the V1

RF (Poirier and Wilson, 2006). Finally, to account for

the impact of global shapes on local contours (Loffler,

2008), we feed the output of V2 layer back into V1.



Feedback and Surround Modulated Boundary Detection 3

Fig. 1 The flowchart of our model. Balanced and imbalanced colour opponent channels are created in the retina and sent
through the LGN. Orientation information is obtained in V1 by convolving the signal with a derivative of Gaussian at twelve
different angles. We model four types of orientation-specific surround: full, far, iso- and orthogonal-orientation. In V2 the signal
is further modified by input from surrounding areas in a directional orthogonal to that of the original RF. Shape feedback is
sent to V1 as an extra channel.

2 Surround Modulation Edge Detection

2.1 Retina and lateral geniculate nucleus (LGN)

The retina is the starting point of visual processing in

humans. Cone photoreceptor cells located at the back

of the retina absorb photons at every spatial location.

Their output is processed in an antagonistic manner by

further layers of single-opponent cells (ganglion cells)

and sent to the cortex through the LGN in the form

of a luminance and two chromatically-opponent chan-

nels (Shapley and Hawken, 2011), usually modelled as

SOlu(x, y) = Sr(x, y) + Sg(x, y) + Sb(x, y),

SOrg(x, y) = κrSr(x, y)− κgSg(x, y), (1)

SOyb(x, y) = κbSb(x, y)− κrg
(
Sr(x, y) + Sg(x, y)

2

)
,

where SO represents the response of single-opponent

cells, {lu, rg, yb} denotes the luminance, red-green and

yellow-blue opponent-channels, (x, y) are the spatial co-

ordinates, and {r, g, b} are the original red, green and

blue cone signals. S is the spectral response function of

each cone and can be approximated by a two dimen-

sional Gaussian function as follows

Sh(x, y) = Ih(x, y) ∗G(x, y, σ), (2)

where I is the input image, h ∈ {r, g, b} is the index

of colour channels, ∗ denotes the convolution operator

and G is the circular two-dimensional Gaussian kernel,

defined as

G(x, y, σ) =
1

2πσ2
e
−
(
x2+y2

2σ2

)
, (3)

with variance σ (set to 0.5 in this study as cells in LGN

are substantially smaller than those of V1). This Gaus-
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sian convolution is equivalent of a smoothing prepro-

cessing stage in computer vision which has been demon-

strated to play an important role in the successive edge

detection (Papari and Petkov, 2011).

When the chromatically-opponent input to single-

opponent cells in Eq. 1 is in equilibrium, parameter κ

is equal to one for all channels. However, there is phys-

iological evidence showing that some types of single-

opponent cells combine chromatic information in an

imbalanced fashion (Shapley and Hawken, 2011). The

significance of these cells has also been shown practi-

cally in many computer vision algorithms, e.g. edge de-

tection (Yang et al, 2013, 2015) and colour constancy

(Gao et al, 2013; Parraga and Akbarinia, 2016). Follow-

ing this insight, we included two imbalanced chromatic

opponent-channels: SOrg′ with κg = 0.7 and SOyb′

with κrg = 0.7.

2.2 Primary visual cortex (V1)

Once the visual signal is preprocessed in the retina and

the LGN, it is sent for further processing into the visual

cortex. Early neurophysiological evidence established

that the feedforward arrays coming from the LGN in-

teract dynamically in the visual cortex, creating various

gain control pools across all spatial orientations which

can be modelled as “divisive normalisation” (Heeger,

1992). In this configuration, each cortical neuron com-

putes a rectified combination of its inputs, followed by

a normalisation where the neuron’s response is divided

by the pooled activity of its neighbours. The overall ef-

fect of this gain normalisation is to both alter the con-
trast response of neural units, making them more re-

sponsive to boundaries, and to narrow their orientation

bandwidths. Another mechanism contributing to ori-

entation tuning stems from the long-range connections

between neurons with similar orientation “collinear fa-

cilitation” (Malach et al, 1993). Both mechanisms are

thought to enhance contour continuity, altering the ef-

fective orientation tuning of cells (Hansen and Neu-

mann, 2008).

Although divisive normalisation and collinear facil-

itation are powerful mechanisms, recent studies have

shown that they are likely to be oversimplifications,

since stimuli outside of the classical receptive field of

a cortical neuron can also modulate that neuron’s ac-

tivity in various ways. The origin of this modulation is

feedforward, feedback and lateral, stemming from pre-

vious connections, later connections and from neigh-

bouring neurons in the visual pathway. However, it was

not until the mid-1980s that the concept of non-classical

(surround-modulated) receptive field became established

and characterised using circular or annular gratings of

varying characteristics.

Now we understand that SO channels arriving at

the cortex are processed by a number of double-opponent

cells in V1 that are responsive to boundaries (Shapley

and Hawken, 2011), but also modulated by regions be-

yond their RF centres, with facilitation predominantly

at low contrast and inhibition at high contrast (Ka-

padia et al, 1999; Shushruth et al, 2009; Angelucci and

Shushruth, 2014). As a consequence of the above, we de-

fined the receptive field of our orientation-tuned double-

opponent cells DO as

DOc(x, y, θ) = CRc(x, y, θ) + ζ−1c (x, y)SRc(x, y, θ) (4)

where c is the index of SO channels, θ is the preferred

orientation of the RF (set to twelve evenly distributed

angles in the range of [0, 2π) radians), CR and SR are

the centre and surround responses respectively, and ζ is

the contrast of the RF centre approximated by the lo-

cal standard deviation of its constituent pixels. Double-

opponent cells are typically modelled in biologically-

inspired algorithms by Gabor filters, (Spratling, 2013;

Yang et al, 2014; Dı́az-Pernas et al, 2014), or the first

derivative of a Gaussian function, (Yang et al, 2013,

2015). We settled for the later one originally proposed

by (Canny, 1986), therefore, we defined the DO centre

response, CR, as

CR(x, y, θ) = SO ∗
∣∣∣∣ϑG(x, y, σ)

ϑθ

∣∣∣∣, (5)

where σ is the RF size (set to 1.5 corresponding to

the typical RF size of foveally-connected neurons in

V1 (Angelucci and Shushruth, 2014), i.e. 0.25◦ of vi-

sual angle that is equivalent to approximately 13 pixels

when viewed from 100cm in a standard monitor).

2.2.1 Surround modulation

We defined the surround response, SR, as follows

SR(x, y, θ) = LS(x, y, θ) + IS(x, y, θ)+

OS(x, y, θ) + FS(x, y, θ),
(6)

where LS is full surround referring to the isotropic re-

gion around the RF; IS denotes iso-orientation sur-

round along the RF preferred axis; OS is orthogonal-

orientation surround in the direction perpendicular to

the RF preferred axis; and FS denotes far surround.

The full surround is an isotropic region, i.e. stimu-

lus occupying the entire surrounding region rather than

isolated flanking lines (Loffler, 2008). Due to this, the

full surround can be modelled as the average response

of a circular window around the cell’s RF centre. This
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surround is inhibitory when it shares the same orienta-

tion as the centre and strongly facilitatory when its ori-

entation is perpendicular to the centre (Loffler, 2008).

Thus, we defined the full surround LS as

LS(x, y, θ) = λζ−1(x, y)
(
CR(x, y, θ⊥) ∗ µ

)
−

ζ(x, y)
(
CR(x, y, θ) ∗ µ

)
,

(7)

where θ⊥ = θ + π
2 , µ is the circular average kernel and

λ determines the strength of orthogonal facilitation in

comparison to the iso inhibition. The former facilitation

is reported to be stronger than the later inhibition (Lof-

fler, 2008), therefore λ must be larger than one.

The iso-orientation surround, IS, extends to a dis-

tance two to four times larger than the RF size (Field

et al, 2014). Within this region elements parallel to the

RF preferred orientation are facilitatory while orthogo-

nal ones are inhibitory (Loffler, 2008; Field et al, 2014),

therefore, we modelled IS as

IS(x, y, θ) = ζ−1(x, y)
(
CR(x, y, θ) ∗ E(σx, θ)

)
−

ζ(x, y)
(
CR(x, y, θ⊥) ∗ E(σx, θ)

)
,

(8)

where E is an elliptical Gaussian function elongated in

the direction θ, defined as

E(x, y, σx, σy, θ) = e−(ax2−2bxy+cy2), with

a =
cos2 θ

2σ2
x

+
sin2 θ

2σ2
y

, b = − sin 2θ

4σ2
x

+
sin 2θ

4σ2
y

,

c =
sin θ2

2σ2
x

cos θ2

2σ2
y

.

We set σy = 0.1σx and σx = 3σ corresponding to phys-

iological measurements (Field et al, 2014).

The orthogonal-orientation surround, OS, projects

to a distance half of the iso-orientation surround (Field

et al, 2014). In the orthogonal-surround elements paral-

lel to the RF preferred orientation are inhibitory while

perpendicular ones are facilitatory (Loffler, 2008; Field

et al, 2014), thus, we modelled OS as

OS(x, y, θ) = ζ−1(x, y)
(
CR(x, y, θ⊥) ∗ E(σx, θ⊥)

)
−

ζ(x, y)
(
CR(x, y, θ) ∗ E(σx, θ⊥)

)
. (9)

The far surround could extend to regions up to 12.5◦

of visual angle (Shushruth et al, 2009) which is ap-

proximately equivalent to 673 pixels when viewed from

100cm in a standard monitor. Consequently the feed-

forward and horizontal connections in V1 that mediate

interactions between the RF and its near surround are

too slow to account for the fast onset of far surround.

Due to this, it has been suggested that far surround is

operated through a different mechanism via inter-areal

feedback connections (Shushruth et al, 2013; Angelucci

and Shushruth, 2014). We speculate that parts of these

inter-areal connections come from spatial scale layers

in V1 (Hess, 2014), and assume their influence to be

facilitatory when image elements in this region share

the same orientation as the centre (Ichida et al, 2007).

Therefore, we defined FS as

FS(x, y, θ) = ζ−1(x, y)

4∑
s=2

CRs(x, y, θ)

s
(10)

where s is the index of the corresponding spatial fre-

quency scale. This processing is analogous to the multi-

scale processing common to both visual sciences and

computer vision, with the distinction that we account

for both contrast and distance, since surround modula-

tion has been reported to be stronger in the near than

in the far regions (Angelucci and Shushruth, 2014).

2.3 Visual area two (V2)

Visual processing becomes more global along the brain’s

ventral pathway, where neurons in each consecutive area

seem to pool information from increasingly larger spa-

tial regions (i.e. exponentially larger receptive fields).

This allow them to process increasingly complex image

features, such as curved arcs, angles, and line inter-

sections and eventually shapes and objects. The next

interconnected adjacent area to V1 is V2, where many

neurons have been reported to respond to curvatures

and extended arcs (Wilson and Wilkinson, 2014). It has

been proposed that RFs in area V2 extract curvature

information by pooling signals from V1 using a centre-

surround mechanism in the direction orthogonal to the

V1 orientations (Wilson and Wilkinson, 2014; Poirier

and Wilson, 2006). In order to model this, first, we de-

fined the V1 response, V 1R, as the most activated DO

orientation. This operation is assumed to be realised

by complex cells pooling the maximum value of DO

cells (Thériault et al, 2015), modelled as

V 1Rc(x, y) = arg max
θ∈[0,2π)

(DOc(x, y, θ)) . (11)

The V2 RFs show similar contrast-variant surround

modulation as those of V1 (Shushruth et al, 2009).

Therefore, we modelled the V2 response, V 2R, through

a Difference-of-Gaussians (DoG) as

V 2Rc(x, y) =V 1Rc,θ(x, y) ∗ E(σx, θ⊥)−
υc(x, y)V 1Rc,θ(x, y) ∗ E(5σx, θ⊥)

(12)

where υ is the contrast of V 1R computed by its lo-

cal standard deviation, the index θ at V 1Rθ shows the
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preferred orientation of that RF. Cortical RFs increase

their diameters systematically by approximately a fac-

tor of three from lower to higher areas (Wilson and

Wilkinson, 2014). Therefore, we set the size of V2 RF,

σx, to three times the size of a V1 RF. In Eq. 12 sur-

round is five times larger than the centre according to

physiological findings (Shushruth et al, 2009).

2.4 Feedback connections

In the primate visual system there are generally massive

feedback connections from higher visual areas into lower

ones (Angelucci and Shushruth, 2014). For instance, the

majority of the LGN inputs are feedback connections

from other areas of the brain, in particular the visual

cortex. The functional role of this cortical feedback in

visual processing is still poorly understood, although

new evidence shows that these projections are organ-

ised into parallel streams and their effects include tune-

sharpening, gain-modulation and various adjustments

to behavioural demands (Briggs and Martin, 2014).

In our model we accounted for only a fraction of

the feedback from V2 to V1 corresponding to the well

established fact that global shape influences local con-

tours (Loffler, 2008). We simulated this global shape by

averaging the V2 outputs of all channels and sending

it as feedback to V1. This feedback is processed as all

other inputs to V1. The final edge map is created as a

sum of all V2 output channels

edge(x, y) =
∑
c

V 2Rc(x, y), with

c ∈ {lu, rg, yb, rg′, yb′, feedback}.
(13)

3 Experiments and results

We tested our model – termed Surround-modulation

Edge Detection (SED) – on three benchmark datasets1:

(i) the Berkeley Segmentation Dataset and Benchmark

(BSDS) (Martin et al, 2001; Arbelaez et al, 2011), (ii)

the Multi-cue Boundary Detection Dataset (MBDD)

(Mély et al, 2016), and (iii) the Contour Image Database

(CID) (Grigorescu et al, 2003). Each image of all three

datasets is supplemented with a ground truth that is

created from manually-drawn edges by number of hu-

man subjects. We evaluated our algorithm in the stan-

dard precision-recall curve based on its harmonic mean

(referred to as F-measure) on three criteria: optimal

scale for the entire dataset (ODS) or per image (OIS)

1 The source code and all the experimental materi-
als are available at https://github.com/ArashAkbarinia/

BoundaryDetection.

and average precision (AP). Naturally, ODS is the most

representative of all to measure the performance since

it uses a fixed threshold for all images in the dataset

(Arbelaez et al, 2011). The results we report in this pa-

per were obtained with a fixed set of parameters (see

details in Section 2) for all datasets much in the same

way as the human visual system.

3.1 Berkeley Segmentation Dataset and Benchmark

(BSDS)

The BSDS (Martin et al, 2001; Arbelaez et al, 2011)

contains two sets of colour images BSDS300 (100 test

images and 200 training images) and BSDS500 (200 test

images). This dataset contains a wide range of natural

and man-made objects. Size of each image is 481× 321

pixels. Arguably BSDS is considered as the benchmark

dataset for boundary detection in the field of computer

vision.

Table 1 compares the results of our model to sev-

eral other state-of-the-art algorithms that have also re-

ported theirs results on the BSDS dataset. From this ta-

ble we can observe that in BSDS500 our model improves

the ODS of methods driven by low-level and biological

features by 4%. This improvement is 3% in BSDS300.

It must be noted that deep-learning methods often use

BSDS300 as the training set and therefore they do not

report their results on this fragment of BSDS.

In order to study the robustness of different algo-

rithms to achromatic images, we conducted a further

experiment on the grey-scale version of BSDS images.

The results of this experiment for our model along with

five other algorithms driven by low-level features and

one learning method (whose source code were publicly

available) are presented in Table 2. We can observe

similar patterns as chromatic images: our proposal en-

hances ODS by 3% in both BSDS300 and BSDS500. It

is worth highlighting that performance of the learning-

based gPb significantly drops in grey-scale images. Our

model obtains a 4% higher ODS comparing to gPb in

both BSDS300 and BSDS500.

3.2 Multi-cue Boundary Detection Dataset (MBDD)

The MBDD (Mély et al, 2016) composed of short binoc-

ular video sequences of natural scenes. This dataset

contains challenging scenes for boundary detection by

framing a few dominant objects in each shot under a

variety of appearances. Size of each image is 1280×720

pixels. The dataset contains 100 scenes and offers two

sets of hand-annotations: one for object boundaries and

another for lower-level edges.
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BSDS300 BSDS500

Method ODS OIS AP ODS OIS AP

Human 0.79 0.79 – 0.80 0.80 –

L
o
w

-l
ev

el
fe

a
tu

re
s

Canny (Canny, 1986) 0.58 0.62 0.58 0.60 0.63 0.58

Mean Shift (Comaniciu and Meer, 2002) 0.63 0.66 0.54 0.64 0.68 0.56

Felz-Hutt (Felzenszwalb and Huttenlocher, 2004) 0.58 0.62 0.53 0.61 0.64 0.56

Normalised Cuts (Cour et al, 2005) 0.62 0.66 0.43 0.64 0.68 0.45

B
io

lo
g
ic

a
l PC/BC (Spratling, 2013) 0.61 – – – – –

CO (Yang et al, 2013) 0.64 0.66 0.65 0.64 0.68 0.64

MCI (Yang et al, 2014) 0.62 – – 0.64 – –

dPREEN (Dı́az-Pernas et al, 2014) 0.65 – – – – –

SCO (Yang et al, 2015) 0.66 0.68 0.70 0.67 0.71 0.71

M
a
ch

in
e-

le
a
rn

in
g BEL (Dollar et al, 2006) 0.65 – – 0.61 – –

gPb (Arbelaez et al, 2011) 0.70 0.72 0.66 0.71 0.74 0.65

D
ee

p
-l

ea
rn

in
g DeepNets (Kivinen et al, 2014) – – – 0.74 0.76 0.76

DeepEdge (Bertasius et al, 2015a) – – – 0.75 0.75 0.80

DeepContour (Shen et al, 2015) – – – 0.76 0.77 0.80

HFL (Bertasius et al, 2015b) – – – 0.77 0.79 0.80

HED (Xie and Tu, 2015) – – – 0.78 0.80 0.83

SED (Proposed) 0.69 0.71 0.71 0.71 0.74 0.74

Table 1 Results of several edge detection algorithms on the BSDS300 and BSDS500 (Martin et al, 2001; Arbelaez et al, 2011).

BSDS300 BSDS500

Method ODS OIS AP ODS OIS AP

Canny (Canny, 1986) 0.58 0.62 0.53 0.60 0.63 0.54

PC/BC (Spratling, 2013) 0.61 0.63 0.40 0.64 0.65 0.41

CO (Yang et al, 2013) 0.60 0.63 0.60 0.61 0.64 0.61

MCI (Yang et al, 2014) 0.62 0.64 0.55 0.64 0.66 0.56

SCO (Yang et al, 2015) 0.62 0.64 0.64 0.63 0.67 0.66

gPb (Arbelaez et al, 2011) 0.61 0.64 0.60 0.63 0.66 0.62

SED (Proposed) 0.65 0.67 0.68 0.67 0.70 0.70

Table 2 Results of several edge detection algorithms on the grey-scale images of BSDS300 and BSDS500 (Martin et al, 2001;
Arbelaez et al, 2011).

We have reported the results of our model along

with five algorithms driven by low-level features and

one learning method for both types of annotations in

Table 3. In comparison to the non-learning methods,

we can observe that the proposed model improves the

ODS by 3% in case of object boundaries. With respect

to the lower-level edges this improvement is 2%. Our

results are also better than the learning-based gPb for

both types of annotations.

We believe that the object boundaries annotation

is more relevant to the problem we are addressing in

this paper since the low-level edges annotation contains

many uninformative line segments from small objects

(e.g. leaves and grass). This is evident in an exemplary

sample illustrated in Fig. 2.

Similar to BSDS, in order to study the role of colour

on each algorithm, we performed an experiment on the

grey-scale images of MBDD. Table 4 shows the results

of this experiment. SED still performs better than other

algorithms driven by low level features (1% ODS im-

Original Image Object Boundaries Low-level Edges

Fig. 2 Comparison of object boundaries and low-level edges
annotations of MBDD (Mély et al, 2016).

provement in both types of annotations). In comparison

to the learning-based gPb we obtain the same ODS in

object boundaries, however SED performs slightly bet-

ter in low-level edges. A surprising detail emerges when

the results of CO or SCO for colour images is com-

pared to the grey-scale ones; both algorithms perform

slightly better in absence of colour (see Tables 3 and

4). This suggests imbalanced colour opponency require

more careful implementation. We speculate this might

also be the reason that our improvement in the grey-

scale images of MBDD falls to minimal. This issue can

be addressed in future studies.
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Object Boundaries Low-level Edges

Method ODS OIS AP ODS OIS AP

Canny (Canny, 1986) 0.61 0.65 0.54 0.75 0.78 0.76

PC/BC (Spratling, 2013) 0.69 0.70 0.43 0.80 0.81 0.70

CO (Yang et al, 2013) 0.64 0.67 0.66 0.77 0.80 0.83

MCI (Yang et al, 2014) 0.69 0.70 0.70 0.77 0.77 0.66

SCO (Yang et al, 2015) 0.68 0.71 0.72 0.79 0.82 0.86

gPb (Arbelaez et al, 2011) 0.71 0.72 0.70 0.78 0.81 0.82

SED (Proposed) 0.72 0.74 0.77 0.81 0.83 0.86

Table 3 Results of several edge detection algorithms on the MBDD (Mély et al, 2016), for two ground truth annotations of
object boundaries and low level edges.

Object Boundaries Low-level Edges

Method ODS OIS AP ODS OIS AP

Canny (Canny, 1986) 0.60 0.65 0.53 0.74 0.78 0.76

PC/BC (Spratling, 2013) 0.68 0.69 0.43 0.79 0.82 0.69

CO (Yang et al, 2013) 0.65 0.67 0.67 0.77 0.80 0.83

MCI (Yang et al, 2014) 0.69 0.70 0.67 0.73 0.73 0.59

SCO (Yang et al, 2015) 0.69 0.71 0.73 0.79 0.82 0.83

gPb (Arbelaez et al, 2011) 0.70 0.71 0.71 0.78 0.81 0.82

SED (Proposed) 0.70 0.71 0.74 0.80 0.82 0.86

Table 4 Results of several edge detection algorithms on the grey-scale images of MBDD (Mély et al, 2016), for two ground
truth annotations of object boundaries and low level edges.

3.3 Contour Image Database (CID)

The CID (Grigorescu et al, 2003) contains 40 grey-scale

images of natural scenes and animal wildlife. Size of

each image is 512 × 512 pixels. Table 5 compares the

results of SED to five algorithms driven by low-level

features and one learning method on this dataset. We

can observe that SED exceeds other methods by 5%

ODS improvement. It is worth highlighting that the

learning-based gPb scores 7% lower than the proposed

model.

CID

Method ODS OIS AP

Canny (Canny, 1986) 0.56 0.64 0.57

PC/BC (Spratling, 2013) 0.58 0.62 0.42

CO (Yang et al, 2013) 0.55 0.63 0.57

MCI (Yang et al, 2014) 0.60 0.63 0.53

SCO (Yang et al, 2015) 0.58 0.64 0.61

gPb (Arbelaez et al, 2011) 0.57 0.61 0.54

SED (Proposed) 0.65 0.69 0.68

Table 5 Results of seven edge detection algorithms on the
CID dataset (Grigorescu et al, 2003).

3.4 Component analysis

In our algorithm we have modelled different areas and

aspects of the visual cortex. In order to investigate

the contribution of each component of our model, we

conducted four additional experiments on the BSDS

dataset:

– Gaussian Derivative – In this scenario, we ac-

counted neither for the surround modulation in V1,

nor for the V2 pooling and feedback. Essentially

only convolving the single-opponent cells with the

first derivative of Gaussian function similar to CO

(Yang et al, 2013).

– Only V1 Surround – In this case, we excluded V2

pooling and feedback. We only included full, far, iso-

and orthogonal-orientation surround modulation for

V1 RFs.

– No V2 Feedback – In this scenario, we excluded

the shape feedback sent from area V2 to V1, i.e.

c ∈ {lu, rg, yb, rg′, yb′} in Eq. 13.

– No Far surround – In this case, we did not account

for far surround modulation, i.e. FS = 0 in Eq. 6.

The precision-recall curves of these experiments for

BSDS300 and BSDS500 are shown in Fig. 4. Edge out-

puts of different components of our algorithm along

with the full model on a few exemplary images are il-

lustrated in Fig. 5.

4 Discussion

Quantitative results of conducted experiments on three

benchmark datasets (i.e. BSDS, MBDD and CID), for
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0.63 0.62 0.76

0.71 0.74 0.78

0.57 0.60 0.70

0.64 0.66 0.73

0.61 0.72 0.79

0.77 0.80 0.86

0.68 0.69 0.75

Original Ground Truth CO (Yang et al, 2013) SCO (Yang et al, 2015) SED

Fig. 3 Qualitative results of three biologically-inspired methods. The F-measure is indicated on the right bottom corner. The
first two rows belong to BSDS300, the third and forth to BSDS500, the sixth and seventh to MBDD, and the last row to CID.

coloured and grey-scale images, demonstrate that SED

systematically improves state-of-the-art for the cate-

gory of non-learning based models. Our proposed model

outperforms other methods driven by low-level features

and biologically-inspired algorithms in all three crite-

ria of ODS, OIS and AP (see Tables 1–5 in Section 3).

This enhancement is also qualitatively pronounced in

exemplary results shown in Fig. 3. On the one hand,

our model shows greater robustness in textural areas

in comparison to CO, on the other hand, thanks to its

surround modulation, SED performs better at detect-

ing continuous lines compared to SCO. For instance,

in the first row of the Fig. 3, it is evident that CO is

strongly troubled with the textural information origi-

nating from the background vegetation, however SED

successfully suppresses a large amount of those. At the

same time, it is apparent that SCO blends the con-

tours of the present bird with the straws, however SED
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correctly extracts the boundaries of the bird from the

grassland. We can observe similar patterns in the rest

of the pictures of the Fig. 3.

Our improvements over state-of-the-art originates

from the combination of different components of pro-

posed model. The precision-recall curves in Fig. 4 shows

that excluding surround modulation and the V2 mod-

ule all together drops the ODS F-measure to 0.63 (black

curves in both BSDS300 and BSDS500). This is in line

with the results of CO which is essentially the same as

our model in the absence of both V1 surround modu-

lation and the V2 module. Including surround modu-

lation (i.e. full, far, iso- and orthogonal-orientation re-

gions) contributes to a significant enhancement of re-

sults by boosting the F-measure to 0.66 and 0.67 in

BSDS300 and BSDS500 respectively (pink curves). This

clearly shows that surrounding regions play a crucial

role in the process of edge detection in agreement with

previous psychophysical findings (Loffler, 2008). Impor-

tance of surround modulation has been even shown in

convolutional neural networks, for example consider-

ing the contextual information from neighbouring pixels

was reported to facilitate detection of objects’ occluded

boundaries (Fu et al, 2016). Qualitative comparison of

the second and third columns of Fig. 5 suggests that

although V1 surround modulation does not contribute

to texture suppression, it strengthens continues con-

tours (we have marked a few examples by the red and

blue ovals, for instance the exterior borders of bricks in

the last row are more continuous in the “Only V1 Sur-

round” column in comparison to the “Gaussian Deriva-

tive” one, at the same time the intermedial borders are

correctly suppressed in “Only V1 Surround” as a re-

sult of accounting for iso- and orthogonal-orientation

surround modulation).

Comparison of “Only V1 Surround” and “No V2

Feedback” pictures in Fig. 5 reveals that the V2 module

strongly assist the process of eliminating textural and

noisy patches. This is consistent with physiological find-

ings that suggest texture statistics might be encoded in

V2 (Landy, 2014; Freeman et al, 2013). The robustness

of our model to noisy scenes and undesired background

textures could be explained by the fact that V2 RFs are

large and therefore suppress small discontinuities across

neighbouring pixels. Although V2 centre-surround sup-

pression is beneficial in general with 1% (BSDS300) and

2% (BSDS500) improvements in F-measures (the red

curves versus the pink ones in Fig. 4), it causes occa-

sional over-smoothing and consequently in high recalls

the precisions of the pink curves are higher than the red

ones. We postulate that this problem can partially be

addressed by accounting for a mechanism similar to the

visual cortex where suppression can turn to facilitation
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Fig. 4 Precision-recall curves of difference components of our
model on the BSDS300 (top) and BSD500 (bottom). In the
legends the ODS F-measures are indicated.

at low contrast levels (Angelucci and Shushruth, 2014).

Modelling this phenomenon is onerous since the thresh-

old between suppression and facilitation is cell specific

and there is no universal contrast level or surround

stimulus size that triggers facilitation across the entire

cell population (Angelucci and Shushruth, 2014). Fur-

thermore, neural recordings of macaque demonstrates

that the activation level of V2 neurons are higher when

exposed to naturalistic texture in comparison to spec-

trally matched noise (Freeman et al, 2013). This feature

was not present among V1 neurons. This indicates that

a more complex V2 model is required to treat noise and

texture distinctively.

Excluding the global shape feedback from our model

lowers the ODS F-measure by 2% (compare the green

and red curves in Fig. 4). It is difficult to qualitatively

appreciate the influence of this feedback connection in

Fig. 5, however a closer comparison of the green ovals
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0.64 0.72 0.76 0.74 0.76

Original Image Gaussian Derivative Only V1 Surround No V2 Feedback No Far Surround Full Model

Fig. 5 Evaluation of the different components of SED. The images show the result of our full model on one exemplary image
along with the four experiments we conducted. F-measures are on the right bottom corner of images.

in the “No V2 Feedback” and “Full Model” columns

suggests that shape feedback re-enforce the true edges

(the intensity of pixels along edges are higher in “Full

Model” in comparison to their corresponding pairs in

“No V2 Feedback”). This is in line with previously sta-

bilised neurophysiological findings that show one of the

functional roles of feedback connections is amplification

and focus of neuronal activities in subsequent lower ar-

eas (Hupe et al, 1998). Correspondingly, in computer vi-

sion, iterative subroutines that are analogous to the role

of feedback connections have been shown beneficial in

recovering occluded boundaries by employing regional

cues as criteria to eliminate weak edges while forming

larger areas iteratively (Hoiem et al, 2007).

The precision-recall curves in Fig. 4 shows that ex-

cluding far surround modulation reduces the ODS F-

measure to 0.66 and 0.69 in BSDS300 and BSDS500 re-

spectively (blue curves), which still is better than other

non-learning state-of-the-art algorithms. A qualitative

comparison of “No Far Surround” and “Full Model” re-

sults in Fig. 5 reveals that far surround appears to con-

tribute in enhancing continuous edges while suppressing

broken ones (e.g. the contours marked with green ovals

in “No Far Surround” contain more abrupt alternate

right and left turns in comparison to the “Full Model”,

at the same time “No Far Surround” contains larger

number of line fragments). Quantitatively, we observe

a similar issue in far surround modulation to the V2 sur-

round modulation: in high recalls “No Far Surround”

has a higher precision than “Full Model” (blue versus

green curves in Fig. 4). Resolving this is a subject for

further investigation.

Computational Complexity

In principle, our model ought to be computationally

very low cost since its building blocks are simple Gaus-
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sian convolutions. With this in mind, we reported the

average computational time of seven algorithms on the

BSDS500 in Table 6 and to our surprise, the Matlab

implementation of SED is rather slow. After a careful

analysis of the different components of our model, we

discovered that the imfilter function of Matlab is sub-

stantially slower when an image is convolved with an

oriented elliptical Gaussian kernel across right angles.

This is presumably due to the fact that imfilter is op-

timised for separable two-dimensional kernels and be-

haves significantly slower for non-separable ones. This

turned out to be an important issue for our V2 RF sur-

round modulation which uses a kernel of size 157× 157

pixels computed for twelve orientations. Since OpenCV

filter2D does not suffer from this problem, the C++ im-

plementation of our model offers real-time processing.

It is worth mentioning that we did not take advantage

of any GPU programming in the C++ implementation.

We believe our model can greatly benefit from the GPU

parallel architecture due to the fact that its basic units

are matrix operations.

Method Time (s)

Canny (Canny, 1986) 0.54

PC/BC (Spratling, 2013) � 1800

CO (Yang et al, 2013) 0.73

MCI (Yang et al, 2014) 21.00

SCO (Yang et al, 2015) 2.27

gPb (Arbelaez et al, 2011) 7.88

SED (Proposed) 7.45 (0.60)*

Table 6 Average computational time (in seconds) of seven
edge detection algorithms driven by low-level features on
the BSDS500 under the Matlab framework with Intel(R)
Xeon(R) CPU E5-1620 v2 @ 3.70GHz. *C++ Implementa-
tion of our algorithm.

5 Conclusion

In this paper, we present a biologically-inspired edge de-

tection model grounded on physiological findings of the

visual cortex and psychophysical knowledge of visual

perception. Our main contributions can be summarised

as follows: (i) modelling a contrast-dependant surround

modulation of V1 receptive fields by accounting for full,

far, iso- and orthogonal-orientation surround; (ii) in-

troducing a V2 centre-surround mechanism to pool V1

signals in their perpendicular orientations; and (iii) ac-

counting for shape feedback connections from V2 to

V1. We quantitatively compared the proposed model to

current state-of-the-art algorithms on three benchmark

datasets (on both colour and grey scale images) and

our results show a significant improvement compared to

the other non-learning and biologically-inspired mod-

els while being competitive to the learning ones. De-

tailed analysis of different components of our model

suggest that V1 surround modulation strengthen edges

and continues lines while V2 module contributes to the

suppression of undesired textural elements.

It must be acknowledged that within the proposed

framework we have managed to only model a portion

of what is known about surround modulation. The en-

tire mechanism is considerably more complex. For in-

stance, in our formulation, we simplified the interaction

between surrounding regions by treating them as indi-

vidual entities. However, from psychophysical studies

it is evident that the non-linear interactions between

surround and central regions are part of a multiplex

mechanism determined by a number of factors (Spill-

mann et al, 2015), such as, (a) the configurations of

both inducers and targets (Loffler, 2008), and (b) the

spatial gap between target and surround (Tzvetanov

and Dresp, 2002). Consequently, in a more comprehen-

sive model these short and long interactions must be

unified under one regime. Furthermore, it is recognised

that the interaction across different areas of the cortex

is a of dynamic nature and higher-level inputs can facili-

tate lower-level routines (Spillmann et al, 2015). There-

fore, our model can benefit from a more entangled for-

mulation of bottom-up and top-down processes. For in-

stance, it is well established that perception of shape is

significantly influenced by points where multiple edges

meet, e.g. corners (Koenderink and Van Doorn, 1982).

A solution to this border ownership dilemma can be

sought by persisting the initial responses of neurons

and utilising them in the later figure-ground discrim-

ination (O’Herron and von der Heydt, 2011). At the

same time, in future works, we should model the com-

plex shape processing occurring in V4 (e.g. by concen-

tric summation of V2 signals (Wilson and Wilkinson,

2014)), and consider its feedback connections to V1 and

V2 with respect to phenomena such as filling-in surfaces

and grouping.

Biologically-inspired solutions such as the one pre-

sented here make two contributions, one technological

(advancing the state-of-the-art) and the other scientific

(understanding the relationship between the human vi-

sual system and the visual environment). The more we

learn about the properties of the human visual system

the better we can explain visual behaviour. Within cur-

rent limitations (both in knowledge and resources) we

have tried to keep our modelling decisions as close as

possible to what we know about the physiology, in three

main respects: (a) our architecture reflects the low-level

features that are common to mammalian cortical ar-
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chitecture and emerged after millions of years of evo-

lution (i.e. are not ad-hoc or dataset-dependant); (b)

our model parameters are the same in all experiments,

which is a feature of how the human visual system oper-

ates; and (c) our paradigm does not include supervised

learning from large datasets, which is also a feature of

how biological systems operate (their low-level features

learning tends to be largely unsupervised).
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