Cesar de Souza, Adrien Gaidon, Yohann Cabon, Naila Murray, & Antonio Lopez. (2020). Generating Human Action Videos by Coupling 3D Game Engines and Probabilistic Graphical Models. IJCV - International Journal of Computer Vision, 128, 1505–1536.
Abstract: Deep video action recognition models have been highly successful in recent years but require large quantities of manually-annotated data, which are expensive and laborious to obtain. In this work, we investigate the generation of synthetic training data for video action recognition, as synthetic data have been successfully used to supervise models for a variety of other computer vision tasks. We propose an interpretable parametric generative model of human action videos that relies on procedural generation, physics models and other components of modern game engines. With this model we generate a diverse, realistic, and physically plausible dataset of human action videos, called PHAV for “Procedural Human Action Videos”. PHAV contains a total of 39,982 videos, with more than 1000 examples for each of 35 action categories. Our video generation approach is not limited to existing motion capture sequences: 14 of these 35 categories are procedurally-defined synthetic actions. In addition, each video is represented with 6 different data modalities, including RGB, optical flow and pixel-level semantic labels. These modalities are generated almost simultaneously using the Multiple Render Targets feature of modern GPUs. In order to leverage PHAV, we introduce a deep multi-task (i.e. that considers action classes from multiple datasets) representation learning architecture that is able to simultaneously learn from synthetic and real video datasets, even when their action categories differ. Our experiments on the UCF-101 and HMDB-51 benchmarks suggest that combining our large set of synthetic videos with small real-world datasets can boost recognition performance. Our approach also significantly outperforms video representations produced by fine-tuning state-of-the-art unsupervised generative models of videos.
Keywords: Procedural generation; Human action recognition; Synthetic data; Physics
|
|
David Berga, Xavier Otazu, Xose R. Fernandez-Vidal, Victor Leboran, & Xose M. Pardo. (2019). Generating Synthetic Images for Visual Attention Modeling. PER - Perception, 48, 99.
|
|
Ivet Rafegas, Maria Vanrell, Luis A Alexandre, & G. Arias. (2020). Understanding trained CNNs by indexing neuron selectivity. PRL - Pattern Recognition Letters, 136, 318–325.
Abstract: The impressive performance of Convolutional Neural Networks (CNNs) when solving different vision problems is shadowed by their black-box nature and our consequent lack of understanding of the representations they build and how these representations are organized. To help understanding these issues, we propose to describe the activity of individual neurons by their Neuron Feature visualization and quantify their inherent selectivity with two specific properties. We explore selectivity indexes for: an image feature (color); and an image label (class membership). Our contribution is a framework to seek or classify neurons by indexing on these selectivity properties. It helps to find color selective neurons, such as a red-mushroom neuron in layer Conv4 or class selective neurons such as dog-face neurons in layer Conv5 in VGG-M, and establishes a methodology to derive other selectivity properties. Indexing on neuron selectivity can statistically draw how features and classes are represented through layers in a moment when the size of trained nets is growing and automatic tools to index neurons can be helpful.
|
|
Hassan Ahmed Sial, Ramon Baldrich, & Maria Vanrell. (2020). Deep intrinsic decomposition trained on surreal scenes yet with realistic light effects. JOSA A - Journal of the Optical Society of America A, 37(1), 1–15.
Abstract: Estimation of intrinsic images still remains a challenging task due to weaknesses of ground-truth datasets, which either are too small or present non-realistic issues. On the other hand, end-to-end deep learning architectures start to achieve interesting results that we believe could be improved if important physical hints were not ignored. In this work, we present a twofold framework: (a) a flexible generation of images overcoming some classical dataset problems such as larger size jointly with coherent lighting appearance; and (b) a flexible architecture tying physical properties through intrinsic losses. Our proposal is versatile, presents low computation time, and achieves state-of-the-art results.
|
|
Fei Yang, Yongmei Cheng, Joost Van de Weijer, & Mikhail Mozerov. (2020). Improved Discrete Optical Flow Estimation With Triple Image Matching Cost. ACCESS - IEEE Access, 8, 17093–17102.
Abstract: Approaches that use more than two consecutive video frames in the optical flow estimation have a long research history. However, almost all such methods utilize extra information for a pre-processing flow prediction or for a post-processing flow correction and filtering. In contrast, this paper differs from previously developed techniques. We propose a new algorithm for the likelihood function calculation (alternatively the matching cost volume) that is used in the maximum a posteriori estimation. We exploit the fact that in general, optical flow is locally constant in the sense of time and the likelihood function depends on both the previous and the future frame. Implementation of our idea increases the robustness of optical flow estimation. As a result, our method outperforms 9% over the DCFlow technique, which we use as prototype for our CNN based computation architecture, on the most challenging MPI-Sintel dataset for the non-occluded mask metric. Furthermore, our approach considerably increases the accuracy of the flow estimation for the matching cost processing, consequently outperforming the original DCFlow algorithm results up to 50% in occluded regions and up to 9% in non-occluded regions on the MPI-Sintel dataset. The experimental section shows that the proposed method achieves state-of-the-arts results especially on the MPI-Sintel dataset.
|
|
Fei Yang, Luis Herranz, Joost Van de Weijer, Jose Antonio Iglesias, Antonio Lopez, & Mikhail Mozerov. (2020). Variable Rate Deep Image Compression with Modulated Autoencoder. SPL - IEEE Signal Processing Letters, 27, 331–335.
Abstract: Variable rate is a requirement for flexible and adaptable image and video compression. However, deep image compression methods (DIC) are optimized for a single fixed rate-distortion (R-D) tradeoff. While this can be addressed by training multiple models for different tradeoffs, the memory requirements increase proportionally to the number of models. Scaling the bottleneck representation of a shared autoencoder can provide variable rate compression with a single shared autoencoder. However, the R-D performance using this simple mechanism degrades in low bitrates, and also shrinks the effective range of bitrates. To address these limitations, we formulate the problem of variable R-D optimization for DIC, and propose modulated autoencoders (MAEs), where the representations of a shared autoencoder are adapted to the specific R-D tradeoff via a modulation network. Jointly training this modulated autoencoder and the modulation network provides an effective way to navigate the R-D operational curve. Our experiments show that the proposed method can achieve almost the same R-D performance of independent models with significantly fewer parameters.
|
|
Rada Deeb, Joost Van de Weijer, Damien Muselet, Mathieu Hebert, & Alain Tremeau. (2019). Deep spectral reflectance and illuminant estimation from self-interreflections. JOSA A - Journal of the Optical Society of America A, 31(1), 105–114.
Abstract: In this work, we propose a convolutional neural network based approach to estimate the spectral reflectance of a surface and spectral power distribution of light from a single RGB image of a V-shaped surface. Interreflections happening in a concave surface lead to gradients of RGB values over its area. These gradients carry a lot of information concerning the physical properties of the surface and the illuminant. Our network is trained with only simulated data constructed using a physics-based interreflection model. Coupling interreflection effects with deep learning helps to retrieve the spectral reflectance under an unknown light and to estimate spectral power distribution of this light as well. In addition, it is more robust to the presence of image noise than classical approaches. Our results show that the proposed approach outperforms state-of-the-art learning-based approaches on simulated data. In addition, it gives better results on real data compared to other interreflection-based approaches.
|
|
Gabriel Villalonga, Joost Van de Weijer, & Antonio Lopez. (2020). Recognizing new classes with synthetic data in the loop: application to traffic sign recognition. SENS - Sensors, 20(3), 583.
Abstract: On-board vision systems may need to increase the number of classes that can be recognized in a relatively short period. For instance, a traffic sign recognition system may suddenly be required to recognize new signs. Since collecting and annotating samples of such new classes may need more time than we wish, especially for uncommon signs, we propose a method to generate these samples by combining synthetic images and Generative Adversarial Network (GAN) technology. In particular, the GAN is trained on synthetic and real-world samples from known classes to perform synthetic-to-real domain adaptation, but applied to synthetic samples of the new classes. Using the Tsinghua dataset with a synthetic counterpart, SYNTHIA-TS, we have run an extensive set of experiments. The results show that the proposed method is indeed effective, provided that we use a proper Convolutional Neural Network (CNN) to perform the traffic sign recognition (classification) task as well as a proper GAN to transform the synthetic images. Here, a ResNet101-based classifier and domain adaptation based on CycleGAN performed extremely well for a ratio∼ 1/4 for new/known classes; even for more challenging ratios such as∼ 4/1, the results are also very positive.
|
|
Vacit Oguz Yazici, Abel Gonzalez-Garcia, Arnau Ramisa, Bartlomiej Twardowski, & Joost Van de Weijer. (2020). Orderless Recurrent Models for Multi-label Classification. In 33rd IEEE Conference on Computer Vision and Pattern Recognition.
Abstract: Recurrent neural networks (RNN) are popular for many computer vision tasks, including multi-label classification. Since RNNs produce sequential outputs, labels need to be ordered for the multi-label classification task. Current approaches sort labels according to their frequency, typically ordering them in either rare-first or frequent-first. These imposed orderings do not take into account that the natural order to generate the labels can change for each image, e.g.\ first the dominant object before summing up the smaller objects in the image. Therefore, in this paper, we propose ways to dynamically order the ground truth labels with the predicted label sequence. This allows for the faster training of more optimal LSTM models for multi-label classification. Analysis evidences that our method does not suffer from duplicate generation, something which is common for other models. Furthermore, it outperforms other CNN-RNN models, and we show that a standard architecture of an image encoder and language decoder trained with our proposed loss obtains the state-of-the-art results on the challenging MS-COCO, WIDER Attribute and PA-100K and competitive results on NUS-WIDE.
|
|
Yaxing Wang, Luis Herranz, & Joost Van de Weijer. (2020). Mix and match networks: multi-domain alignment for unpaired image-to-image translation. IJCV - International Journal of Computer Vision, 128, 2849–2872.
Abstract: This paper addresses the problem of inferring unseen cross-modal image-to-image translations between multiple modalities. We assume that only some of the pairwise translations have been seen (i.e. trained) and infer the remaining unseen translations (where training pairs are not available). We propose mix and match networks, an approach where multiple encoders and decoders are aligned in such a way that the desired translation can be obtained by simply cascading the source encoder and the target decoder, even when they have not interacted during the training stage (i.e. unseen). The main challenge lies in the alignment of the latent representations at the bottlenecks of encoder-decoder pairs. We propose an architecture with several tools to encourage alignment, including autoencoders and robust side information and latent consistency losses. We show the benefits of our approach in terms of effectiveness and scalability compared with other pairwise image-to-image translation approaches. We also propose zero-pair cross-modal image translation, a challenging setting where the objective is inferring semantic segmentation from depth (and vice-versa) without explicit segmentation-depth pairs, and only from two (disjoint) segmentation-RGB and depth-RGB training sets. We observe that a certain part of the shared information between unseen modalities might not be reachable, so we further propose a variant that leverages pseudo-pairs which allows us to exploit this shared information between the unseen modalities
|
|
David Berga, & Xavier Otazu. (2020). Modeling Bottom-Up and Top-Down Attention with a Neurodynamic Model of V1. NEUCOM - Neurocomputing, 417, 270–289.
Abstract: Previous studies suggested that lateral interactions of V1 cells are responsible, among other visual effects, of bottom-up visual attention (alternatively named visual salience or saliency). Our objective is to mimic these connections with a neurodynamic network of firing-rate neurons in order to predict visual attention. Early visual subcortical processes (i.e. retinal and thalamic) are functionally simulated. An implementation of the cortical magnification function is included to define the retinotopical projections towards V1, processing neuronal activity for each distinct view during scene observation. Novel computational definitions of top-down inhibition (in terms of inhibition of return, oculomotor and selection mechanisms), are also proposed to predict attention in Free-Viewing and Visual Search tasks. Results show that our model outpeforms other biologically inspired models of saliency prediction while predicting visual saccade sequences with the same model. We also show how temporal and spatial characteristics of saccade amplitude and inhibition of return can improve prediction of saccades, as well as how distinct search strategies (in terms of feature-selective or category-specific inhibition) can predict attention at distinct image contexts.
|
|
Yaxing Wang, Abel Gonzalez-Garcia, Luis Herranz, & Joost Van de Weijer. (2021). Controlling biases and diversity in diverse image-to-image translation. CVIU - Computer Vision and Image Understanding, 202, 103082.
Abstract: JCR 2019 Q2, IF=3.121
The task of unpaired image-to-image translation is highly challenging due to the lack of explicit cross-domain pairs of instances. We consider here diverse image translation (DIT), an even more challenging setting in which an image can have multiple plausible translations. This is normally achieved by explicitly disentangling content and style in the latent representation and sampling different styles codes while maintaining the image content. Despite the success of current DIT models, they are prone to suffer from bias. In this paper, we study the problem of bias in image-to-image translation. Biased datasets may add undesired changes (e.g. change gender or race in face images) to the output translations as a consequence of the particular underlying visual distribution in the target domain. In order to alleviate the effects of this problem we propose the use of semantic constraints that enforce the preservation of desired image properties. Our proposed model is a step towards unbiased diverse image-to-image translation (UDIT), and results in less unwanted changes in the translated images while still performing the wanted transformation. Experiments on several heavily biased datasets show the effectiveness of the proposed techniques in different domains such as faces, objects, and scenes.
|
|
Aymen Azaza, Joost Van de Weijer, Ali Douik, Javad Zolfaghari Bengar, & Marc Masana. (2020). Saliency from High-Level Semantic Image Features. SN - SN Computer Science, 1–12.
Abstract: Top-down semantic information is known to play an important role in assigning saliency. Recently, large strides have been made in improving state-of-the-art semantic image understanding in the fields of object detection and semantic segmentation. Therefore, since these methods have now reached a high-level of maturity, evaluation of the impact of high-level image understanding on saliency estimation is now feasible. We propose several saliency features which are computed from object detection and semantic segmentation results. We combine these features with a standard baseline method for saliency detection to evaluate their importance. Experiments demonstrate that the proposed features derived from object detection and semantic segmentation improve saliency estimation significantly. Moreover, they show that our method obtains state-of-the-art results on (FT, ImgSal, and SOD datasets) and obtains competitive results on four other datasets (ECSSD, PASCAL-S, MSRA-B, and HKU-IS).
|
|
Rahma Kalboussi, Aymen Azaza, Joost Van de Weijer, Mehrez Abdellaoui, & Ali Douik. (2020). Object proposals for salient object segmentation in videos. MTAP - Multimedia Tools and Applications, 79(13), 8677–8693.
Abstract: Salient object segmentation in videos is generally broken up in a video segmentation part and a saliency assignment part. Recently, object proposals, which are used to segment the image, have had significant impact on many computer vision applications, including image segmentation, object detection, and recently saliency detection in still images. However, their usage has not yet been evaluated for salient object segmentation in videos. Therefore, in this paper, we investigate the application of object proposals to salient object segmentation in videos. In addition, we propose a new motion feature derived from the optical flow structure tensor for video saliency detection. Experiments on two standard benchmark datasets for video saliency show that the proposed motion feature improves saliency estimation results, and that object proposals are an efficient method for salient object segmentation. Results on the challenging SegTrack v2 and Fukuchi benchmark data sets show that we significantly outperform the state-of-the-art.
|
|
Marc Masana, Xialei Liu, Bartlomiej Twardowski, Mikel Menta, Andrew Bagdanov, & Joost Van de Weijer. (2022). Class-incremental learning: survey and performance evaluation. TPAMI - IEEE Transactions on Pattern Analysis and Machine Intelligence, .
Abstract: For future learning systems incremental learning is desirable, because it allows for: efficient resource usage by eliminating the need to retrain from scratch at the arrival of new data; reduced memory usage by preventing or limiting the amount of data required to be stored -- also important when privacy limitations are imposed; and learning that more closely resembles human learning. The main challenge for incremental learning is catastrophic forgetting, which refers to the precipitous drop in performance on previously learned tasks after learning a new one. Incremental learning of deep neural networks has seen explosive growth in recent years. Initial work focused on task incremental learning, where a task-ID is provided at inference time. Recently we have seen a shift towards class-incremental learning where the learner must classify at inference time between all classes seen in previous tasks without recourse to a task-ID. In this paper, we provide a complete survey of existing methods for incremental learning, and in particular we perform an extensive experimental evaluation on twelve class-incremental methods. We consider several new experimental scenarios, including a comparison of class-incremental methods on multiple large-scale datasets, investigation into small and large domain shifts, and comparison on various network architectures.
|
|
Shiqi Yang, Yaxing Wang, Joost Van de Weijer, & Luis Herranz. (2020). Unsupervised Domain Adaptation without Source Data by Casting a BAIT.
Abstract: arXiv:2010.12427
Unsupervised domain adaptation (UDA) aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain. Existing UDA methods require access to source data during adaptation, which may not be feasible in some real-world applications. In this paper, we address the source-free unsupervised domain adaptation (SFUDA) problem, where only the source model is available during the adaptation. We propose a method named BAIT to address SFUDA. Specifically, given only the source model, with the source classifier head fixed, we introduce a new learnable classifier. When adapting to the target domain, class prototypes of the new added classifier will act as a bait. They will first approach the target features which deviate from prototypes of the source classifier due to domain shift. Then those target features are pulled towards the corresponding prototypes of the source classifier, thus achieving feature alignment with the source classifier in the absence of source data. Experimental results show that the proposed method achieves state-of-the-art performance on several benchmark datasets compared with existing UDA and SFUDA methods.
|
|
Shiqi Yang, Kai Wang, Luis Herranz, & Joost Van de Weijer. (2020). Simple and effective localized attribute representations for zero-shot learning.
Abstract: arXiv:2006.05938
Zero-shot learning (ZSL) aims to discriminate images from unseen classes by exploiting relations to seen classes via their semantic descriptions. Some recent papers have shown the importance of localized features together with fine-tuning the feature extractor to obtain discriminative and transferable features. However, these methods require complex attention or part detection modules to perform explicit localization in the visual space. In contrast, in this paper we propose localizing representations in the semantic/attribute space, with a simple but effective pipeline where localization is implicit. Focusing on attribute representations, we show that our method obtains state-of-the-art performance on CUB and SUN datasets, and also achieves competitive results on AWA2 dataset, outperforming generally more complex methods with explicit localization in the visual space. Our method can be implemented easily, which can be used as a new baseline for zero shot-learning. In addition, our localized representations are highly interpretable as attribute-specific heatmaps.
|
|
Sudeep Katakol, Basem Elbarashy, Luis Herranz, Joost Van de Weijer, & Antonio Lopez. (2021). Distributed Learning and Inference with Compressed Images. TIP - IEEE Transactions on Image Processing, 30, 3069–3083.
Abstract: Modern computer vision requires processing large amounts of data, both while training the model and/or during inference, once the model is deployed. Scenarios where images are captured and processed in physically separated locations are increasingly common (e.g. autonomous vehicles, cloud computing). In addition, many devices suffer from limited resources to store or transmit data (e.g. storage space, channel capacity). In these scenarios, lossy image compression plays a crucial role to effectively increase the number of images collected under such constraints. However, lossy compression entails some undesired degradation of the data that may harm the performance of the downstream analysis task at hand, since important semantic information may be lost in the process. Moreover, we may only have compressed images at training time but are able to use original images at inference time, or vice versa, and in such a case, the downstream model suffers from covariate shift. In this paper, we analyze this phenomenon, with a special focus on vision-based perception for autonomous driving as a paradigmatic scenario. We see that loss of semantic information and covariate shift do indeed exist, resulting in a drop in performance that depends on the compression rate. In order to address the problem, we propose dataset restoration, based on image restoration with generative adversarial networks (GANs). Our method is agnostic to both the particular image compression method and the downstream task; and has the advantage of not adding additional cost to the deployed models, which is particularly important in resource-limited devices. The presented experiments focus on semantic segmentation as a challenging use case, cover a broad range of compression rates and diverse datasets, and show how our method is able to significantly alleviate the negative effects of compression on the downstream visual task.
|
|