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Abstract

Previous studies in that line suggested that lateral interactions of V1 cells are
responsible, among other visual effects, of bottom-up visual attention (alternatively
named visual salience or saliency). Our objective is to mimic these connections in the
visual system with a neurodynamic network of firing-rate neurons. Early subcortical
processes (i.e. retinal and thalamic) are functionally simulated. An implementation of
the cortical magnification function is included to define the retinotopical projections
towards V1, processing neuronal activity for each distinct view during scene observation.
Novel computational definitions of top-down inhibition (in terms of inhibition of return
and selection mechanisms), are also proposed to predict attention in Free-Viewing and
Visual Search conditions. Results show that our model outpeforms other
biologically-inpired models of saliency prediction as well as to predict visual saccade
sequences during free viewing. We also show how temporal and spatial characteristics of
inhibition of return can improve prediction of saccades, as well as how distinct search
strategies (in terms of feature-selective or category-specific inhibition) predict attention
at distinct image contexts.

Author summary

Saliency maps are the representations of how certain visual regions attract attention in
a visual scene, and these can be measured with eye movements. A myriad of
computational models with artificial and biological inspiration have been able to acquire
outstanding predictions of human fixations. However, most of these models have been
built specifically for visual saliency, a characteristic that denies their biological
plausibility for modeling distinct visual processing mechanisms or other visual processes
simultaneously. In addition to saliency, our approach is also able to efficiently work for
other tasks (without applying any type of training or optimization and keeping the
same parametrization) such as Visual Search, Visual Discomfort [1], Brightness [2] and
Color Induction [3]. By performing simulations of human physiology and its
mechanisms, we propose to build a unified model that could be extended to predict and
understand distinct perceptual processes in which V1 is responsible.

Introduction 1

The human visual system (HVS) structure has evolved in a way to efficiently 2

discriminate redundant information [4–6]. In order to filter or select the information to 3
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be processed in higher areas of visual processing in the brain, the HVS guides eye 4

movements towards regions that appear to be visually conspicuous or distinct in the 5

scene. This phenomena was observed during visual search tasks [7, 8], where detecting 6

early visual features (such as orientation, color or size) was done in parallel 7

(pre-attentively) or required either a serial ”binding” step depending on scene context. 8

Koch & Ullman [9] came up with the hypothesis that neuronal mechanisms involved in 9

selective visual attention generate a unique ”master” map from visual scenes, coined 10

with the term ”saliency map”. From that, Itti, Koch & Niebur [10] presented a 11

computational implementation of the aforementioned framework (IKN), inspired by the 12

early mechanisms of the HVS. It was done by extracting properties of the image as 13

feature maps (using a pyramid of difference-of-gaussian filters at distinct orientations, 14

color and intensity), obtaining feature-wise conspicuity by computing center-surround 15

differences as receptive field responses and integrating them on a unique map using 16

winner-take-all mechanisms. Such framework served as a starting point for saliency 17

modeling [11,12], which derived in a myriad of computational models, that differed in 18

their computations but conserved a similar pipeline. From a biological perspective, 19

further hypotheses suggested that primates’ visual system structure was mainly 20

connected to the efficient coding principle. Later studies considered that maximizing 21

information of scenes was the key factor on forming visual feature representations. To 22

test that, Bruce & Tsotsos [13] implemented a saliency model (AIM) by extracting 23

sparse representations of image statistics (using independent component analysis). 24

These representations were found to be remarkably similar to cells in V1, which follow 25

similar spatial properties to Gabor filters [14]. 26

While the current concept of saliency maps is to predict probabilities of specific 27

spatial locations as candidates of eye movements, it is also crucial to understand how to 28

predict individual fixations or saccade sequences (also named ”scanpaths”). Scanpath 29

predictions were formerly done through probabilistic measures of saccade amplitude 30

statistics. These followed a similar heavy-tailed distribution to a Cauchy-Levy (in 31

reference to random walks or ”Levy flights”, minimizing global uncertainty) [15], with 32

highest probability of fixations at a low saccade amplitude. This procedure was 33

implemented in Boccignone & Ferraro’s model [16], taking saliency from IKN. Later, 34

LeMeur & Liu [17] proposed a more biologically plausible approach, accounting for 35

oculomotor biases and inhibition of return effects. It used a graph-based saliency model 36

(GBVS, also inspired by IKN) [18], with a higher probability to catch grouped fixations 37

(which tend to be in stimulus center). 38

In order to evaluate model predictions with eye movement data, certain patterns 39

underlying human eye movement behavior need to be accounted for a more detailed 40

description and analysis of visual attention. These effects are found to be dependent on 41

context, discriminability, temporality, task and memory during scene viewing and visual 42

search [19,20]. Attention and spatial selection, therefore, is also dependent on the 43

neuronal activations from both bottom-up and top-down mechanisms. These processes 44

are known to compete [21] to form a unique representation, termed priority map [22]. 45

These hypotheses suggest that attention is separated in distinct stages (pre-attentive as 46

bottom-up and attentive as top-down) and that contributions towards guiding eye 47

movements are simultaneously affected by distinct mechanisms in the HVS [23]. This 48

competition for visual priority is biased by a term called relevance (as opposed to 49

saliency), where top-down attention is driven by task demands, working and semantic 50

memory as well as episodic memory, emotion and motivation (3 of which seem to be 51

unique for each individual and momentum) [24]. At that end, it is stated [25,26] that 52

visual selection relies on activations from higher-level layers towards lower-level 53

receptive fields, considering modelization attention towards spatio-temporal regions of 54

interest using top-down instructions. 55
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Objectives 56

Initial hypotheses by Li [27,28] suggested that visual saliency is processed by the lateral 57

interactions of V1 cells. In their work, pyramidal cells and interneurons in the primary 58

visual cortex (V1, Brodmann Area 17 or striate cortex) and their horizontal 59

intracortical connections are seen to modulate activity in V1. Li’s neurodynamic 60

model [29] of excitatory and inhibitory firing-rate neurons was able to determine how 61

contextual influences of visual scenes contribute to the formation of saliency. In this 62

model, interactions between neurons tuned to specific orientation sensitivities served as 63

predictors of pop-out effects and search asymmetries [30]. Li’s neurodynamic model was 64

later extended by Penacchio et al. [2] proposing the aforementioned lateral interactions 65

to also be responsible for brightness induction mechanisms. By considering neuron 66

orientation selectivity at distinct spatial scales, this model can act as a contrast 67

enhancement mechanism of a particular visual area depending of induced activity from 68

surrounding regions. Latest work from Berga & Otazu [31] has shown that the same 69

model (without changing its parametrization) is able to predict saliency using real and 70

synthetic color images. We propose to extend the model providing saliency 71

computations with foveation, concerning distinct viewpoints during scene observation 72

(mapping retinal projections towards V1 retinotopy) as a main hypothesis for predicting 73

visual scanpaths. Furthermore, we also test how the model is able to provide predictions 74

considering recurrent feedback mechanisms of already visited regions, as well as from 75

visual feature and exemplar search tasks with top-down inhibition mechanisms. 76

A unified model of V1 predicts several perceptual processes 77

Here we present a novel neurodynamic model of visual attention and we remark its 78

biological plausability as being able to simultaneously reproduce other effects such as 79

Brightness Induction [2], Chromatic Induction [3] and Visual Discomfort [1] effects. 80

Brightness and Chromatic induction stand for the variation of perceived luminance and 81

color of a visual target depending on its luminance and/or chromatic properties as well 82

as for its surrounding area respectively. Thus, a visual target can be perceived as being 83

different (contrast) or similar (assimilation) to its physical properties by varying its 84

surrounding context. With the simulations of our model, the output of V1’s neuronal 85

activity (coded as firing-rates), after several cycles of excitatory-inhibitory V1 86

interneuron interactions, is used as predictors of induction and saliency respectively. 87

These responses will act as a contrast enhancement mechanism, which for the case of 88

saliency, are integrated towards projections in the superior colliculus (SC) for eye 89

movement control. Therewith, our model has also been able to reproduce visual 90

discomfort, as relative contrast energy of particular region on a scene is found to produce 91

hyperexcitability in V1 [32,33], one of possible causes of producing certain conditions 92

such as malaise, nausea or even migraine. Previous neurodynamic [34–38] and saliency 93

models [11,12] are able to reproduce attention processes and predict eye movements [39] 94

but are uniquely presented to work for that specific task. On behalf of model biological 95

plasusibility on V1 function and its computations, we present a unified model of lateral 96

connections in V1, able to predict attention from real and synthetic color images while 97

mimicking physiological properties of the neural circuitry stated previously. 98

Model 99

Retinal and LGN responses 100

The HVS perceives the light at distinct wavelengths of the visual spectrum and 101

separates them to distinct channels for further processing in the cortex. First, retinal 102
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photoreceptors (or RP, corresponding to rod and cone cells) are photosensitive to 103

luminance (rhodopsin-pigmented) and color (photopsin-pigmented) [40,41]. Mammal 104

cone cells are photosensitive to distinct wavelengths between a range of ∼ 400–700nm, 105

corresponding to three cell types, measured to be maximally responsive to Long (L, 106

λmax ' 560nm), Medium (M, λmax ' 530nm) and Short (S, λmax ' 430nm) 107

wavelengths respectively [42]. RP signals are received by retinal ganglion cells (or RGC) 108

forming an opponent process [43]. This opponent process allows to model midget, 109

bistratified and parasol cells as ”Red vs Green”, ”Blue vs Yellow”, and ”Light vs Dark” 110

channels. In order to simulate these chromatic and light intensity opponencies using 111

digital images, we transformed the RGB color space to the CIELAB (Lab or L∗a∗b∗) 112

space (including a gamma correction of γRGB=1/2.2), as exemplified in Fig. 1. 113

L∗ = R+G+B,

a∗ =
R−G
L∗

,

b∗ =
R+G− 2B

L∗
.

(1)

The L∗, a∗ and b∗ channels form a cubic color space [44] with RGB opponencies 114

(+L=lighter, −L=darker, +a=reddish, −a=greenish, +b=yellowish and −b=blueish). 115

Image RGB components

L* (M-) a* (P-) b* (K-)

Fig 1. Example of CIELAB components of color opponencies given a sample image,
corresponding to L∗ (Intensity), a∗ (Red-Green) and b∗ (Blue-Yellow).

Later, receptive fields in RGC [43] are activated in a center-surround fashion, 116

receiving ON-OFF responses, being connected to horizontal (H-cell) and bipolar cell 117

(B-cell) upstream circuitry. B-cells are hyperpolarized (OFF) or depolarized (ON) 118

according to RP activity. In conjunction, H-cells send excitatory (center) and inhibitory 119

feedback (surround) to RP. Midget (R-G), bistratified (B-Y) and parasol (L-D) RGC 120

signals are sent through the optic nerve towards Parvo-, Konio- and Magno-cellular 121

pathways in LGN respectively. 122

V1 Hypercolumnar organization 123

RGC center-surround responses are sent to LGN and projected to V1 cells. V1’s 124

cortical hypercolumns encode similar features of orientation-selective cells at different 125
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spatial frequencies. Simple cells found in V1 receptive fields (RFs) are sensitive to 126

center-surround responses at distinct orientations, whereas complex cells overlap ON 127

and OFF regions (and can be modeled as a combination of simple cell responses). 128

Parvo- (P- or β), Konio- (K- or γ) and Magno-cellular (M- or α) pathways send signals 129

separately towards distinct layers of the striate cortex (correspondingly projecting to 130

4Cβ & 6 from ”P-”, 2/3 & 4A from ”K-” and 4Cα & 6 from ”M-” cell pathways) for 131

parallel and recurrent processing in V1. 132

Fig 2. Representation of wavelet coefficients (ωisoθ), in conjunction with the output of
”a-trous” wavelet transform applied to components (o = L∗, a∗, b∗) shown in Fig. 1.

We modeled V1’s simple cell responses with a 2D ”a-trous” wavelet transform [45]. 133

Discrete wavelet transforms allow to process signals by extracting information of 134

orientation and scale-dependent features in the visual space, filtering each of the 135

aforementioned opponencies. By building feature maps of orientation sensitivities at 136

distinct spatial frequencies, it is possible to represent V1 RF input activity (which we 137

applied separately to each pathway of the LGN), shown in Fig. 2. The ”a-trous” 138

transform is undecimated and allows to perform a transform where its basis functions 139

remain similar to Gabor filters. The ”a trous” wavelet transform can be defined as: 140

ωs,h = cs−1 − cs,h,
ωs,v = cs−1 − cs,v ,

ωs,d = cs−1 − (cs,h ⊗ h′s + ωs,h + ωs,v),

cs = cs−1 − (ωs,h + ωs,v + ωs,d).

(2)

where 141

cs,h = cs−1 ⊗ hs,
cs,v = cs−1 ⊗ h′s.

(3)

By transposing the wavelet filter (hs, expressed in Fig. 2) and dilating it at distinct 142

spatial scales (s = 1...S), we can obtain a set of wavelet approximation planes (cs,θ), 143

that are combined for calculating wavelet coefficients (ωs,θ) at distinct orientation 144

selectivities (θ = h, v, d). From these equations, three orientation selectivities can be 145

extracted, corresponding to horizontal (θh ' {0± 30||180± 30}º), vertical (θv ' 146
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{90± 30||270± 30}º) and diagonal (θd ' {45± 15||135± 15||225± 15||315± 15}º) 147

angles. For the case of scale features, sensititivies to size (in degree of visual angle) 148

correspond to 2s0(s−1)/{pxva}, where ”pxva” is the number of pixels for each degree of 149

visual angle according to experimentation, and s0=8, is the minimum size of the wavelet 150

filter (h0) defining the first the scale frequency sensitivity. Initial c0 = Io is obtained 151

from the CIE L*a*b* components and cn corresponds to the residual plane of the last 152

wavelet component (e.g. s = n). The image inverse (I ′o) can be obtained by integrating 153

the wavelet ωs,θ and residual planes cn: 154

I′o =

n∑
s=1,θ=h,v,d

ωs,θ + cn. (4)

Cortical mapping 155

The human eye is composed by RP but these are not homogeneously or equally 156

distributed along the retina, contrarily to digital cameras. RP are distributed as a 157

function of eccentricity with respect to the fovea (or central vision) [46]. Fovea’s 158

diameter is known to comprise ∼5deg of diameter in the visual field, extended by the 159

parafovea (∼5-9deg), the perifovea (∼9-17deg) and the macula (∼17deg). Central vision 160

is known to provide maximal resolution at ∼1deg of the fovea, whereas in periphery 161

(∼60-180- deg) there is lower resolution for the retinotopic positions that are further 162

away from the fovea. These effects are known to affect color, shape, grouping and 163

motion perception of visual objects (even at few degrees of eccentricity), making 164

performance on attentional mechanisms eccentricity-dependent [47]. Axons from the 165

nasal retina project to the contralateral LGN, whereas the ones from the temporal 166

retina are connected with the ipsilateral LGN. These projections [48] make the left 167

visual field send inputs of the LGN towards the right hemifield of V1, similarly for the 168

case of the right visual field to the left hemifield of V1 (Fig. 3-Right). 169

⇒

⇒

⇒

W (r,Φ) = λ log(reiΦ + e0), (5)

Z(X,Y i) = e(W/λ) − e0. (6)

Fig 3. Left: Examples of applying the cortical magnification function (transforming
the visual space to the cortical space) at distinct views of the image presented in Fig. 1.
Right: Illustration of how polar coordinates (Z-plane) of azimuth Φ = (1, 2, 3, 4, 5) in
the left visual field at distinct eccentricities r = (d, c, b, a) are transformed to the
cortical space (W-plane) in mm (X and Yi axis values). Equations 5 & 6 express the
monopole direct and inverse cortical mapping transformations (parameters set as
λ = 12mm and e0 = 1deg [28, Section 2.3.1]). Illustration sketch was adapted from E.L.
Schwartz [49], Biol.Cybernetics 25, p.184. Copyright (1977) by Springer-Verlag.

We have modeled these projections with a cortical magnification 170
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function [49] [28, Section 2.3.1] using 128 mm of simulated cortical surface (see an 171

example in Fig. 3-Left). The visual space is transformed to a cortically-magnified space 172

(with its correspondence of millimeter for each degree of visual angle) with a logarithmic 173

mapping function. The pixel-wise cartesian visual space is transformed to polar 174

coordinates in terms of eccentricity and azimuth for a specific foveation instance, then 175

transformed to coordinates in mm of cortical space. Acknowledging that the visual 176

space for digital images is represented with either a squared or rectangular shape, we 177

computed the continuation of cortical coordinates by symmetrically mirroring existing 178

coordinates of the image with their correspondence of visual space outside boundaries in 179

the cortical space. In that manner, we exclude possible effects of zero-padding over 180

recurrent processing while preserving 2D shapes for our feature representations. For this 181

case, these effects were minimized by the inverse and repeating the same process at 182

specific interaction cycles. Schwartz’s mapping has been applied over the wavelet 183

coefficients represented in Fig. 2, as basis functions are convolved in the visual space, 184

later magnified to the cortical space for representing V1 signals. These signals will serve 185

as input to excitatory pyramidal cells, projected to their respective iso-orientation 186

domains at distinct RF sizes. 187

V1 Neuronal Dynamics 188

Li’s hypotheses suggest that V1 computations are responsible of generating a bottom-up 189

saliency map [27,28]. These hypotheses state that intracortical interactions between 190

orientation-selective neurons in V1 are able to explain contextually-dependent 191

perceptual effects present in pre-attentive vision [29,30,50–53], relative to contour 192

integration, visual segmentation, visual search asymmetries, figure-ground and border 193

effects, among others. Pop-out effects that form the saliency map are believed to be the 194

result of horizontal connections in V1, that interact with each other locally and 195

reciprocally. These connections are formed by excitatory cells and inhibitory 196

interneurons [54,55], processing information from pyramidal cell signals in layers of V1. 197

Spatial organization of these cells accounts for selectivity in their orientation columns, 198

their RF size and axonal field localization. The aforementioned interactions between 199

orientation-selective cells was defined by Li’s model [29] of excitatory-inhibitory 200

firing-rate neural dynamics, later extended by Penacchio et al. [2]. Here, contrast 201

enhancement or suppression in neural responses emerge from lateral connections as an 202

induction mechanism. Latest implementation done by Berga & Otazu [31] for saliency 203

prediction used colour images, where chromatic (P-,K-) and luminance (M-) opponent 204

channels were individually processed in order to compute firing-rate dynamics of each 205

pathway separately. With cortical magnification, each gaze can significantly vary 206

contextual information and therefore the output of the model. 207

Our excitatory-inhibitory model1 is described in Table 1. Horizontal connections 208

(lateral and reciprocal) are schematized in Fig. 4 and Table 1C, where excitatory cells 209

have self-directed (J0) and monosynaptic connections (J) between each other, whereas 210

dysynaptically connected through (W ) inhibitory interneurons. Axonal field projections 211

follow a concentric toroid of radius ∆s = 15× 2s−1 and radial distance ∆θ (accounting 212

for RF size ds and radial distance β). Membrane potentials of excitatory (ẋisθ) and 213

inhibitory (ẏisθ) cells are obtained with partial derivative equations defined in Table 1D, 214

composed by a chain of functions that consider firing-rates (obtained by piece-wise 215

linear functions gx and gy) and membrane potentials from previous membrane cycles 216

(modulated by αx, αy constants), current lateral connection potentials (J and W ) and 217

spread of inhibitory activity within hypercolumns (ψ). Background inputs (Inoise and 218

Inorm) correspond to simulating random noise and divisive normalization signals (i.e. 219

1Model implementation in MATLAB: https://github.com/dberga/NSWAM
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accounting for local nonorientation-specific cortical normalization and nonlinearities). 220

Fig 4. Left: Representation of cortical hypercolumns with scale and orientation
selectivity interactions. Right: Model’s intracortical excitatory-inhibitory interactions,
membrane potentials (orange ”ẋ” for excitatory and yellow ”ẏ” for inhibitory) and
connectivities (”J” for monosynaptic excitation and ”W” for dysynaptic inhibition).

Input signals (Iti;soθ) have been defined as the wavelet coefficients (ωtisoθ), splitted 221

between ON and OFF components (representing ON and OFF-center cell signals from 222

RGC and LGN) depending on the value polarity (+ for positive and − for negative 223

coefficient values) from the RF. These signals are processed separately during 10τ 224

(τ = 1 membrane time = 10ms), including a rest interval (using an empty input) of 3τ 225

to simulate intervals between each saccade shift. The model output has been computed 226

as the firing-rate average gx of the ON and OFF components (M(ωt+isoθ) and M(ωt−isoθ)) 227

during the whole viewing time, corresponding to a total of 10 membrane time (being the 228

mean of gx for a specific range of t). 229
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Fig 5. Firing rates plotted for 10 membrane time (100 iterations) accounting for neurons (ON+OFF values) inside a
specific region (1st col.). Mean firing rates for all scales (Spatial Frequency Dynamics, 2nd col.), orientations
(Orientation Selectivity Dynamics, 3rd col.), and color channels (Chromatic Opponency Dynamics, 4th col.).

Combining the output of all components by 230

Ŝti;o =

ns∑
s=1..S;θ=h,v,d

M(ωt+isoθ) +

ns∑
s=1..S;θ=h,v,d

M(ωt−isoθ) + ci , (7)

we can describe the changes of the model (resulting from the simulated lateral 231

interactions of V1) with respect the original wavelet coefficients ωtisoθ. Our result (Sti;o) 232

will define the saliency map as an average conspicuity map or feature-wise 233

distinctiveness (RF firing rates across scales and orientations for each pathway). These 234

changes in firing-rate alternatively define the contrast enhancement seen on the 235

brightness and chromatic induction cases [1–3], where the model output is combined 236
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with the wavelet coefficients {M(ωtiso)ω
t
iso} instead. The network is in total, composed 237

of 1.18× 106 neurons (accounting for 3 opponent channels, both ON/OFF polarities 238

and RF sizes of 128× 64× 3×8). Top-down inhibitory control mechanisms (Ic) are 239

further explained in Table 1E and in section ”Attention as top-down inhibition”. 240

Projections to the SC 241

Latest hypotheses about neural correlates of saliency [56,57] state that the superior 242

colliculus is responsible for encoding visual saliency and to guide eye movements [23, 58]. 243

Acknowledging that the superficial layers of the SC (sSC) receive inputs from the early 244

stages of visual processing (V1, retina), the SC selects these as the root of bottom-up 245

activity to be selected in the intermediate and deep layers (iSC, dSC). In accordance to 246

the previous stated hypotheses [27], saccadic eye movements modulated by saliency 247

therefore are computed by V1 activity, whereas recurrent and top-down attention is 248

suggested to be processed by neural correlates in the parieto-frontal cortex and basal 249

ganglia. All these projections are selected as a winner-take-all mechanism in 250

SC [27,28,30] to a unique map, where retinotopic positions with the highest activity 251

will be considered as candidates to the corresponding saccade locations. These 252

activations in the SC are transmitted to guide vertical and horizontal saccade 253

visuomotor nerves [59]. We have defined the higher active neurons (Equation 8) as the 254

locations for saccades in the visual space (i,j) by decoding the inverse of the cortical 255

magnification (Equation 6) of their respective retinotopic position (”i” neuron at X,Yi). 256

MAXW (X,Y i) = argmax(Ŝ)→MAXZ(r,Φ)→MAXV (i, j), (8)

The behavioral quantity of the unique 2D saliency map has been defined by 257

computing the inverse of the previous processes using the model output for each 258

pathway separately. Retinotopic positions have been transformed to coordinates in the 259

visual space using the inverse of the cortical magnification function (Equation 6). 260

Output signals (V1 sensitivities to orientation and spatial frequencies) are integrated by 261

computing the inverse discrete wavelet transform to obtain unique maps for each 262

channel opponency (Equation 4). A unique representation (Equation 9) of final 263

neuronal responses for each pathway (P-, K- and M- as a∗, b∗ and L∗) is generated with 264

the euclidean norm (adding responses of all channels as in Murray et al. [60] model). 265

The resulting map is later normalized by the variance (Equation 10) of the firing 266

rate [28, Chapter 5]. This map represents the final saliency map, that describes the 267

probability distribution of fixation points in certain areas of the image. In addition to 268

this estimation, the saliency map has been convolved with a gaussian filter simulating a 269

smoothing caused by the deviations of σ = 1 deg given from eye tracking 270

experimentation, recommended by LeMeur & Baccino [61]. 271

Ŝi =

√
Ŝi;a∗ + Ŝi;b∗ + Ŝi;L∗ , (9)

zi(Ŝ) =
Ŝi − µŜ
σŜ

, (10)
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Table 1. Overview of the model, following Nordlie et. al.’s format [62]. Further explanation for model
variables and parameters is in [2, Supporting Information S1].

A Model Summary
Populations Excitatory (x), Inhibitory (y)
Topology –
Connectivity Feedforward: one-to-all, Feedback: one-to-all,

Lateral: all-to-all (including self-connections)
Neuron model Dynamic rate model
Channel models –
Synapse model Piece-wise linear synapse
Plasticity –
Input External current in lower (I) or higher (Ic) cortical areas and random noise (I0)
Measurements Firing-rate (gx and gy)

B Populations
Name Elements Size
x Sigmoidal-like neuron Kx = M ×N ×Θ× S = 64× 128× 3× 8
y Sigmoidal-like neuron Ky = Kx

C Connectivity
Name Source Target Pattern
Jxx x x Excitatory, toric, all to all, non-plastic
J0 x x Excitatory, constant J0 = 0.8
Wxy x y Inhibitory, toric, all to all, non-plastic
Wyx y x Inhibitory, toric, all to all, non-plastic

D Neuron and Synapse Model
Name V1 neuron
Type Dynamic rate model
Synaptic
dynamics

J[isθ,js′θ′] = λ(∆s)0.126e(−β/ds)2−2(β/ds)7−d2s/90 (11)

W[isθ,js′θ′] = λ(∆s)0.14(1− e−0.4(β/ds)1.5 )e−(∆θ/(π/4))1.5 (12)

Membrane
potential ẋisθ = −αxxisθ − gy(yisθ)−

∑
∆s,∆θ 6=0

ψ(∆s,∆θ)gy(yis + ∆sθ + ∆θ)

+ J0g(xisθ) +
∑

j 6=i,s′,θ′
J[isθ,js′θ′]gx(xjs′θ′ ) + Iisθ + I0,

(13)

ẏisθ = −αyyisθ − gx(xisθ) +
∑

j 6=i,s′,θ′
W[isθ,js′θ′]gx(xjs′θ′ ) + Ic (14)

E Input
Type Description
Sensory
(bottom-up)

Input to excitatory neurons, Iti;o = ωtisoθ

Control
(top-down)

Input to inhibitory interneurons, Ic = 1.0 + Inoise + Ivs + Iior

F Measurements

Mean Firing-rate of excitatory neurons for τ=10 membrane time (M(ω
p=[+,−]
isoθ )).
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Attention as top-down inhibition 272

An additional purpose of our work is the modeling of attentional mechanisms beyond 273

pre-attentive visual selection. Instead of analyzing the scene serially, the visual brain 274

uses a set of attentional biases to recognize objects, their relationships and their 275

importance with respect to the task, all given in a set of visual representations. 276

Similarly to the saliency map, the priority map can be interpreted as a unique 2D 277

representation for eye movement guidance formed in the SC, here including top-down 278

(not guided by the stimulus itself) and recurrent information as visual relevance. This 279

phenomena suggests that executive, long-term and short-term/working memory 280

correlates also direct eye movement control [23,63]. Previous hypotheses model these 281

properties by forming the priority map through selective tuning [25,64]. Selective 282

tuning explains attention mechanisms as a hierarchy of winner-take-all processes. This 283

hypothesis suggests that top-down attention can be simulated by spatially inhibiting 284

specific layers of processing. Latest hypotheses [65] confirm that striate cortical activity 285

gain can be modulated by SC responses, with additional modulations arising from 286

pulvinar to extrastriate visual areas. In addition, it has also been stated [66] that V1 287

influences both saliency and top-down learning during visual detection tasks. By 288

functionally simulating the aforementioned top-down mechanisms as inhibitory gates of 289

top-down feedback control in our model [29], we are able to perform task-specific visual 290

selection (VS) and inhibition of return (IoR) mechanisms. 291
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Fig 6. Diagram illustrating how visual information is processed by NSWAM-CM,
including a brain drawing of each bottom-up and top-down attention mechanisms
and their localization in the cortex (Bottom-Right).

Top-down selection Goal-directed or memory-guided saccades imply executive 292

control mechanisms that account for task requirements during stimulus perception. The 293

dorsolateral prefrontal cortex (DLPFC) is known to be responsible for short-term 294

spatial memory, to retrieve long-term memory signals of object representations (through 295

projections towards the para- and hippocampal formations) as well as to perform 296

reflective saccade inhibition, among other functions. These inhibitory signals, later 297

projected to the frontal eye field (FEF), are able to direct gaze during search and 298
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smooth pursuit tasks [63, 67, 68] (also suggested to be crucial for planning intentional or 299

endogenously-guided saccades), where its signals are sent to the SC. By feeding our 300

model with inhibitory signals (Ic shown in Fig. 4 and Table 1E) we can simulate 301

top-down feedback control mechanisms in V1 (initially proposed by Li [29, Sec. 3.7]). In 302

this case, a new term I{vs} is added to the top-down inhibition of our V1 cortical 303

signals that will be projected to the SC during each gaze. 304

I{vs} = α{vs} ·


argmaxp,s,o,θ(ω) , feature-selective (V SM )

(
N∑
i=1

ωpsoθ)/N , category-specific (V SC)
(15)

In this implementation, we can perform distinct search tasks such as feature search 305

(by manually selecting the features, or selecting features with maximal responses, 306

similarly to a boolean selection [26]), exemplar and categorical object search (by 307

processing the mean of responses ω̂ from wavelet coefficients of a single or several image 308

samples ”N”). These low-level computations would serve as cortical activations to be 309

stored as weights in our low-level memory representations, that will be used as 310

inhibitory modulation for the task execution. 311

Inhibition of Return During scene viewing, saccadic eye movements show distinct 312

patterns of fixations [69], directed by exploratory purposes or either towards putting the 313

attentional focus on specific objects in the scene. For the former case, the HVS needs to 314

ignore already visited regions (triggering anti-saccades away from these memorized 315

regions, as a consequence of inhibition) during a period of time before gazing again 316

towards them. This phenomena is named inhibition of return [70], and similarly involves 317

extracting sensory information and short-term memory during scene perception. As 318

mentioned before, DLPFC is responsible of memory-guided saccades, and this function 319

might be done in conjunction with the parietal cortex and the FEF. The parietal areas 320

(LIP and PEF) [63,67,71] are known to be responsible of visuospatial integration and 321

preparation of saccade sequences. These areas conjunctively interact with the FEF and 322

DLPFC for planning these reflexive visually-guided saccades. Acknowledging that LIP 323

receives inputs from FEF and DLPFC, the role of each cannot be disentangled as a 324

unique functional correlate for the IoR. Following the above, we have modeled return 325

mechanisms as top-down cortical inhibition feedback control accounting for 326

previously-viewed saccade locations. Thus, we added an inhibition input I{IoR} at the 327

start of each saccade, which will determine our IoR mechanism: 328

Ig,t=0
{IoR} = MAX(Ŝ)G(MAXV (x, y)) + Ig−1{IoR},

Ig,t>0
{IoR} = α{IoR}(I

t−1
{IoR})

10τ∏
i=1

elog(β{IoR})/τ .
(16)

This term is modulated with a constant power factor α{IoR} and a decay factor 329

β{IoR}, which in every cycle will progressively reduce inhibition. The spatial region of 330

the IoR has been defined as a gaussian function centered to the previous gaze (g), with 331

a spatial standard deviation σ{IoR} dependent on a specific spatial scale and a peak 332

with an amplitude of the maximal RF firing rate of our model’s output (Ŝ). Inhibitory 333

activity is accumulated to the same map and can be shown how is progressively reduced 334

during viewing time (Fig. 14). Alternatively illustrated in Itti et al.’s work [10], the IoR 335

can be applied to static saliency models by substracting the accumulated inhibitory 336

map to the saliency map during each gaze (Ŝ − Ig{IoR}). 337
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Materials and Methods 338

Procedure 339

Experimental data has been extracted from eye tracking experimentation. Four datasets 340

were analyzed, corresponding to 120 real indoor and outdoor images (Toronto [13]), 40 341

nature scene images (KTH [72]), 100 synthetic image patterns (CAT2000P [73]) and 342

230 psychophysical images (SID4VAM [20]). Generically, experimentation for these type 343

of datasets [74] capture fixations from about 5 to 55 subjects, looking at a monitor 344

inside a luminance controlled room while being restrained with a chin rest, located at a 345

relative distance of 30-40 pixels per degree of visual angle (pxva). The tasks performed 346

mostly consist of freely looking at each image during 5000 ms, looking at the ”most 347

salient objects” or searching for specific objects of interest. We have selected these 348

datasets to evaluate prediction performance at distinct scene contexts. Indicators of 349

psychophysical consistency of the models has been presented, evaluating prediction 350

performance upon fixation number and feature contrast. Visual search performance has 351

been evaluated by computing predictions of locating specific objects of interest. For the 352

case of stimuli from real image contexts (Fig. 17) we have used salient object segmented 353

regions from Toronto’s dataset [13], extracted from Li et al. [75]. Finally, for the case of 354

evaluating fixations performed with synthetic image patterns, we used fixations from 355

SID4VAM’s psychophysical stimuli. 356

Model evaluation 357

Current eye tracking experimentation represent indicators of saliency as the probability 358

of fixations on certain regions of an image2. Metrics used in saliency benchmarks [39] 359

consider all fixations during viewing time with same importance, making saliency 360

hypotheses unclear of which computational procedures perform best using real image 361

datasets. Previous psychophysical studies [19,20] revealed that fixations guided by 362

bottom-up attention are influenced by the type of features that appear in the scene and 363

their relative feature contrast. From these properties, the order of fixations and the type 364

of task can drive specific eye movement patterns and center biases, relevant in this case. 365

The AUC metric (Area Under ROC/Receiver Operant Characteristic) represents a 366

score of a curve comprised of true positive values (TP) against false positive (FP) 367

values. The TP are set as human fixations inside a region of the saliency map, whereas 368

FP are those predicted saliency regions that did not fall on human fixation instances. 369

For our prediction evaluation we computed the sAUC (shuffled AUC), where FP are 370

expressed as TP from fixations of other image instances. This metric prioritizes model 371

consistency and penalizes for prediction biases that appear over eye movement datasets, 372

such as oculomotor and center biases (not driven by pre-attentional factors). We also 373

calculated the Information Gain (InfoGain) metric for model evaluation, which 374

compares FP in the probability density distribution of human fixations with the model 375

prediction, while substracting a baseline distribution of the center bias (all fixations 376

grouped together in a single map). Saliency metrics, largely explained by Bylinskii et 377

al. [76], usually compare model predictions with human fixations during the whole 378

viewing time, regardless of fixation order. In our study is also represented the evolution 379

of prediction scores for each gaze. For the case of scanpaths, we evaluated saccade 380

sequences by analyzing saccade amplitude (SA) and saccade landing (SL) statistics. 381

These are calculated using euclidean distance between fixation coordinates (distance 382

between saccade length for SA and distance between locations of saccades for SL). 383

Initial investigations on visual attention [7, 8] during visual search tasks formulated 384

that reaction times of finding a target (defined in a region of interest/ROI) among a set 385

2Code for computing metrics: https://github.com/dberga/saliency
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of distractors are dependent on set size as well as target-distractor feature contrast. In 386

order to evaluate performance on visual search, we utilised two metrics that account for 387

the ground truth mask of specific regions for search and the saliency map (in this 388

context, it could be considered as a ”relevance” map) or predicted saccade coordinates 389

(from locations with highest neuronal activity). The Saliency Index (SI) [20,77] 390

calculates the amount of energy of a saliency map inside a ROI (St) with respect to the 391

one outside (Sb), calculated as: SI = (St − Sb)/Sb. For the case of saccades in visual 392

search, we considered to calculate the probability of fixations inside the ROI (PFI). 393

Results 394

Results on predicting Saliency 395

In this section, probability density maps (GT) have been generated using fixation data 396

of all participants from Toronto, KTH, CAT2000 and SID4VAM eye tracking datasets 397

(model scores and examples in Figs 7-10). Several saliency predictions have been 398

computed from different biologically-inspired models. Our Neurodynamic Saliency 399

Wavelet Model has been computed without (NSWAM) and with foveation 400

(NSWAM-CM), as a mean of cortically-mapped saliency computations through a loop of 401

1, 2, 5 and 10 saccades. The loop consists on obtaining a saliency map for each view of 402

the scene, and obtaining an unique map for each saccade instance by computing the 403

mean of all saliency maps. 404

Based on the shuffled metric scores, traditional saliency models such as AIM overall 405

score higher on real scene images (Fig. 7), scoring sAUCAIM=.663, and 406

InfoGainIKN=.024. For the case of nature images (Fig. 8), our non-foveated and 407

foveated versions of the model (NSWAM and NSWAM-CM) scored highest on both 408

metrics (InfoGainNSWAM=.168 and sAUCNSWAM−CM10=.567). As mentioned 409

before, fixation center biases are present when the task and/or stimulus do not induce 410

regions that are enough salient to produce bottom-up saccades. In addition, in real 411

image datasets (Toronto and KTH), not all images contain particularly salient regions. 412

This phenomena is seemingly presented in our models’ saliency maps from 1st to 10th 413

fixations (Figs. 7-8, rows 5-8), where salient regions are presented to be less evident 414

across fixation order. 415
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Model sAUC InfoGain

Human Fix. .904 2.42

IKN [10] .649 -.024*

AIM [13] .663* -.579

NSWAM .631 -.552

NSWAM-CM1 .636 -.818

NSWAM-CM2 .644 -.738

NSWAM-CM5 .650 -.701

NSWAM-CM10 .655 -.692

Fig 7. Saliency metrics for Toronto (Bruce & Tsotsos [13]) Eye Tracking Dataset

Model sAUC InfoGain

Human Fix. .822 1.41

IKN [10] .551 -.172

AIM [13] .552 -.509

NSWAM .565 -.168*

NSWAM-CM1 .564 -.227

NSWAM-CM2 .566 -.213

NSWAM-CM5 .566 -.211

NSWAM-CM10 .567* -.209

Fig 8. Saliency metrics for KTH (Kootra et al’.s [72]) Eye Tracking Dataset

In synthetic image patterns (CAT2000P ), both of our model versions outperforms 416

other models sAUCNSWAM,NSWAM−CM=.567. Center biases are present in such 417

dataset (see Fig. 9, ”Human Fix.” heatmaps), seemingly reproduced by IKN in the 418

illustration (InfoGainIKN=-.724). For the case of SID4VAM dataset (Fig. 10), salient 419

regions are labeled with specific feature type and contrast, and fixation patterns present 420

lower center biases (due to mainly being based a singleton search type of task with a 421

unique salient target with random location). Our model presents highest scores on both 422

metrics (sAUCNSWAM,NSWAM−CM2=.622 and InfoGainNSWAM−CM10=-.131). 423
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Model sAUC InfoGain

Human Fix. .623 .777

IKN [10] .562 -.724*

AIM [13] .544 -6.49

NSWAM .567* -1.01

NSWAM-CM1 .561 -1.24

NSWAM-CM2 .563 -1.14

NSWAM-CM5 .565 -1.09

NSWAM-CM10 .567* -1.07

Fig 9. Saliency metrics for CAT2000Pattern (Borji & Itti [73]) Dataset

Model sAUC InfoGain

Human Fix. .860 2.80

IKN [10] .608 -.233

AIM [13] .557 -18.2

NSWAM .622* -.149

NSWAM-CM1 .617 -.204

NSWAM-CM2 .622* -.164

NSWAM-CM5 .620 -.139

NSWAM-CM10 .618 -.131*

Fig 10. Saliency metrics for SID4VAM (Berga et al. [20]) Eye Tracking Dataset

In Figs. 7-10 are compared the average score per gaze of human fixations and 424

saliency model predictions. It can be observed that prediction scores for all models 425

decrease as a function of gaze number. Scores of probability density distributions of 426

human fixations (in comparison to fixation locations) decrease around 10% the sAUC 427

after 10 saccades. This decrease of performance is not reproduced by any of the 428

presented models, instead, most of them show a flat or slightly increasing slopes for the 429

case of sAUC scores and logarithmically increasing scores for InfoGain. NSWAM and 430

NSWAM-CM present similar results upon fixation number. 431
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Fig 11. sAUC and InfoGain scores for each relative target-distractor feature contrast

In SID4VAM, stimuli are categorized with specific difficulty (according to the 432

relative target-distractor feature contrast). With these, we computed the score for each 433

relative contrast instance (Ψ) in Fig. 11. After computing every low-level stimulus 434

instance with the presented models and evaluating results with the same metrics, our 435

saliency model (NSWAM and NSWAM-CM) presents better performance than AIM and 436

IKN and also increases score at higher feature contrasts. 437

Discussion 438

Quantitatively, systematic tendencies in free-viewing (center biases, inter-participant 439

differences, etc. [78]) should not be likely to be considered as indicators of saliency. 440

Although shuffled metrics try to penalize for these effects, benchmarks do not 441

compensate for these tendencies from model evaluations (these are particular for each 442

dataset task and stimulus properties). Acknowledging that first saccades determine 443

bottom-up eye movement guidance [79,80], it is a phenomenon also present in our 444

experimental data (in terms of the decrease of performance with respect fixation region 445

probability compared to fixation locations). In that aspect, evaluating first fixations 446

with more importance could define new benchmarks for saliency modeling, similarly with 447

stimuli where feature contrast in salient objects is quantified. Ideal conditions (following 448

the Weber law) determine that if there is less difficulty for finding the salient region 449

(higher target-distractor contrast), saliency will be focused on that region. Conversely, 450

fixations would be distributed on the whole scene if otherwise. Our model presents 451

better performance than other biologically-inspired ones accounting for these basis. 452

Results on predicting scanpaths 453

Illustration of scanpaths from datasets presented in previous section were computed 454

with scanpath models in Fig. 13. Scanpaths are predicted by NSWAM-CM during the 455

first 10 saccades, by selecting maximum activity of our model for every saccade. We 456

have plotted our model’s performance in addition to Boccignone&Ferraro’s and 457

LeMeur&Liu’s predictions (Fig. 12). Saccade statistics show an initial increment of 458

saccade amplitude, decreasing as a function of fixation number. Errors of SA and SL 459

(∆SA and ∆SL) are calculated as absolute differences between model predictions and 460

human fixations. Values of ∆SL appear to be lower and similar for all models during 461

initial fixations. 462
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Toronto KTH CAT2000P SID4VAM

Fig 12. 1st row: Prediction errors in Saccade Landing (∆SL) for real indoor/outdoor
(Toronto), nature (KTH) and synthetic (CAT2000P and SID4VAM) image datasets.
2nd row: Prediction errors in Saccade Amplitude (∆SA) on same datasets. 3rd row:
Correlations of Saccade Amplitude (ρSA) with respect human fixations.

Prediction errors are shown to be sustained or increasing for CLE and NSWAM-CM 463

(maybe due to their lack of processing higher level features, experimental center biases, 464

etc.). Errors on ∆SA predictions are lower for LeMeur&Liu’s model, retaining similar 465

saccades (except for synthetic images of SID4VAM). Although these errors are 466

representative in terms of saccade sequence, we also computed correlations of models’ 467

SA with GT (ρSA). In this last case, NSWAM-CM presents most higher correlation 468

values for all datasets (ρSAToronto=-.38, p=.09; ρSAKTH=.012, p=.96; 469

ρSACAT2000P =.28, p=.16; ρSASID4V AM=.96, p=1.26×10−71) than other models. Most 470

of them seem to accurately predict SA for SID4VAM (which contains mostly visual 471

search psychophysical image patterns), with ρSA between .7 and .8. 472
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Fig 13. Examples of visual scanpaths for a set of real (1st row), nature (2nd row)
and synthetic (3rd row) images. Model scanpaths correspond to Human Fixations
(single sample), CLE [16], LeMeurNatural, LeMeurFaces, LeMeurLandscapes [17]
and NSWAM-CM (ours).

Our scanpath model tend to predict eye movements with large mean saccade 473

amplitudes {M(SA)Toronto=7.8±3.5; M(SA)KTH=13±6.1; 474

M(SA)CAT2000P =15.7±6.7; M(SA)SID4V AM=15.7±6.9 deg}, whereas human fixations 475

combine both short and large saccades {M(SA)Toronto=4.6±1; M(SA)KTH=6.7±.5; 476

M(SA)CAT2000P =5.1±.9; M(SA)SID4V AM=5.8±1.5 deg}. In that aspect, our 477

prediction errors might arise from not correctly predicting focal fixations. 478

We simulated the inhibition factor for all datasets by substracting the inhibition 479

factor I{IoR} to our models’ saliency maps (NSWAM+IoR). After computing prediction 480

errors in SA and SL for a single sample (Fig. 15-Top), best predictions seem to appear 481

at decay values of β{IoR} between .93 and .98, which corresponds to 1 to 5 saccades 482

(similarly explained by Samuel & Kat [81] and Berga et al. [20], where takes from 483

300-1600 ms for the duration of the IoR, corresponding to 1 to 5 times the fixation 484

duration). For the case of the σ{IoR}, lowest prediction error (again, both in SA and SL) 485

is found from 1 to 3 deg (in comparison, LeMeur & Liu [17] parametrized it by default 486

as 2 deg). Results on ∆SA statistics have similar / slightly increasing performance until 487

(β{IoR} <1) a single fixation time, decreasing at highest decay β{IoR} ≥5th saccade. For 488

∆SL values, errors in datasets such as KTH and SID4VAM are decreased at higher 489

decay. For the latter, ∆SA errors are shown to decrease progressively at highest decay 490

values (β{IoR} ≥.93). Lastly, when parametrizing the spatial properties of the IoR, 491

saccade prediction performance is highest at lower size (with a near-constant error in 492

SA and SL increasing about 1 deg for σ{IoR}=1 to 8 deg on all datasets). 493
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β=0 β=.5 β=.93 β=1

σ=1 deg σ=2 deg σ=4 deg σ=8 deg

Fig 14. Left: Evolution of inhibition factor for 100 mem.time (about 1000 iterations),
corresponding approximately to performing 10 saccades to the model (top). Spatial
representation of the IoR with distinct size (bottom). Right: Examples of scanpaths
for different IoR decay factor (top, σ{IoR}=2 deg, β{IoR}={0, .5, .9, 1}) or distinct IoR
size (bottom, σ{IoR}={1, 2, 4, 8} deg,β{IoR}=1).

Fig 15. Statistics of scanpath prediction (∆SA and ∆SL) by the parametrization of
IoR decay (β{IoR}) and IoR size (σ{IoR}) in a single sample (Top row, from image
scanpaths in Fig. 13) and saliency datasets (Bottom row).

Discussion 494

Our model predictions on SA correlate better (i.e. obtain higher ρSA values) than other 495

scanpath models (in terms of how SA evolves over fixations), however, prediction errors 496

are higher in both SL and SA. We believe that these errors are caused by incorrectly 497

predicting locations of fixations, but not for failing on predictions of the saccade 498

sequence per se. These locations are mainly influenced by systematic tendencies in 499

free-viewing (derived by center biases and/or focal fixations in a particular region of the 500

image). Cortical magnification mechanisms might be responsible for processing higher 501

saliency at regions outside the fovea, generating tendencies of uniquely capturing large 502

saccades. These can be solved by processing high-level feature computations near the 503

fovea, which would increase the probability of fixations at lower SA. We have to hesitate 504

that first fixations are long known for being determinants of bottom-up 505

attention [20, 79]. Instead, higher inter-participant differences [78] and center biases [82] 506
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increase as functions of fixation number, suggested as worse candidates for predicting 507

attention. These parameters appear to specifically affect each stimuli differently (and 508

accounting that each stimulus may convey specific semantic importance between each 509

contextual element), which may relate to top-down attention but not to the image 510

characteristics per se. We also want to stress the importance of foveation in our model. 511

This is a major procedure for determining saccade characteristics (including oculomotor 512

tendencies) and saliency computations, as it determines current human actions during 513

scene visualization. The decrease of spatial resolution at increasing eccentricity provides 514

the aforementioned properties, innate in human vision and invariant to scene semantics. 515

Adding an IoR mechanism has been seen to affect model activity and therefore 516

scanpath predictions. In Fig. 14-Left we show how our inhibition factor (I{Ior}) 517

decreases over simulation time in relation to the parametrized decay β{IoR}, as well as 518

the projected RF size with respect the gaussian parameter σ{IoR}. These variables 519

(decay and size) affect either location of saccades and its sequence, modulating firing 520

rate activity to already visited locations. It is shown in Fig. 14-Right that the initial 521

saccade is focused on the salient region and then it spreads to a specific location in the 522

scene, not repeating with higher value of inhibition decay or field size. In the next 523

section we show how our model can preproduce eye movements beyond free-viewing 524

tasks by modulating of inhibitory top-down signals. 525

Results on feature and exemplar search 526

Saliency maps have also been computed with (NSWAM+VS) and without (NSWAM) 527

top-down inhibitory modulation for singleton search stimuli [20]. Top-down selection is 528

applied to our low-level feature dimensions (scale, orientation, channel opponency and 529

its polarity). In NSWAM+VSM , inhibition is parametrized considering the feature with 530

the highest activity inside the stimulus ROI (Equation 15-Top). Besides, inhibitory 531

control in NSWAM+VSC has been set as the mean wavelet coefficients instead 532

(Equation 15-Bottom). 533

Synthetic Pattern Search Object Search

Fig 16. Probability of Fixations Inside the ROI (Bottom row) and statistics of
Saliency Index (Top row) for synthetic image patterns (Left) and salient object
detection regions from real image scenes (Right).

Comparison of results for NSWAM with bottom-up only and with top-down 534

inhibition present higher scores for both SI and PFI (Fig. 16) using top-down inhibition 535

(NSWAM+VSM and NSWAM+VSC). Here, there is an increase of fixations inside the 536

ROI: ∆(PFI)V SM '1% and ∆(PFI)V SC '6% for real object search and almost equal 537

to saliency for synthetic image patterns, ∆(PFI)V SM '0% and ∆(PFI)V SC '1%. The 538

SI is also seen to increase for both cases, with differences of ∆(SI)V SM=3.8× 10−4 and 539
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∆(SI)V SC=5.9× 10−4 for object search and ∆(SI)V SM=3.1× 10−4 and 540

∆(SI)V SC=1.3× 10−5 for psychophysical pattern search. Saliency metrics of sAUC and 541

InfoGain (with Toronto’s eye tracking dataset) increase with the search-based strategy 542

{∆(sAUC)V SM=.018, ∆(sAUC)V SC=.003; ∆(InfoGain)V SM=.002, 543

∆(InfoGain)V SC=.035}. 544

Image Mask NSWAM NSWAM+V SM NSWAM+V SC

”Telephone”

”Banana”

”Bag”

”Bottle”

”Traffic”

”Lamp”
Fig 17. Search instances with a specific ROI (Mask) based on a category/word exemplar.

Free-viewing fixations are seemingly predicted with similar performance in 545

comparison with NSWAM predictions (Fig. 7). Saliency metrics are similar or 546

increasing with respect NSWAM for feature singleton search fixations 547

{∆(sAUC)V SM=3.6×10−3, ∆(sAUC)V SC=2.9×10−3; ∆(InfoGain)V SM=4.1×10−2, 548

∆(InfoGain)V SC=9.4×10−4}, but decrease for the case of free-viewing 549

{∆(sAUC)V SM=-12×10−3, ∆(sAUC)V SC=-8.7×10−3; 550

∆(InfoGain)V SM=-13.7×10−2, ∆(InfoGain)V SC=-3.3×10−2}. 551

We illustrated results of PFI and SI (Fig. 18) in relation to relative target-distractor 552

feature contrast for cases of Brigthness, Color and Size differences, as well as the Set 553

Size for searching a certain target patterns (i.e. a circle superposed by an oriented bar). 554

After computing SI for each distinct psychophysical stimuli, we can see in Figs. 18-19 555

that our model performs best for searching differences with stimuli where there are 556

differences in brightness, color, size and/or superimposed singletons, rather than for the 557
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case of different combination of orientations, specially with heterogeneous, nonlinear or 558

categorical angle configurations. 559

NSWAM

NSWAM-VSM

NSWAM-VSC

NSWAM

NSWAM-VSM

NSWAM-VSC

NSWAM

NSWAM-VSM

NSWAM-VSC

NSWAM

NSWAM-VSM

NSWAM-VSC

Fig 18. Performance on visual search examples with a specific low-level feature contrast (for Brightness, Color or Size)
and Set Size. We represented 7 instances ordered by search difficulty of each feature sample.

Discussion 560

Overall results show that features computed by the top-down approach seemingly 561

performs better in visual search than saliency, both considering features with maximal 562

cortical activity (NSWAM+V SM ) and average statistics of low-level features 563

(NSWAM+V SC). When searching real objects, results in SI are higher for 564

NSWAM+VSC (considering that dataset ROIs are selected from objects that are 565
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already salient). We suggest that considering scene statistics perform better when 566

searching contextually complex exemplars. Here the combination of features could be 567

implicit when processing image ROI average characteristics but not when using maximal 568

activations, qualitatively shown in Fig. 17. The fact that SI scores are lower for 569

free-viewing tasks in pop-out stimuli might be caused from influences of the center bias, 570

presenting more fixations near the center in free-viewing [20]. Search in psychophysical 571

image patterns is significatively more efficient in SI when selecting maximal feature 572

activations (NSWAM+V SM ). Regarding that aspect, exemplar and categorical search 573

for objects in real image scenes would require computations with a higher number of 574

features [83,84] (which would represent in more detail each cortical cell sensitivity). 575

Fig 19. Performance on visual search evaluated on each distinct low-level feature,
stimulus instances are from SID4VAM’s dataset [20].

General Discussion 576

Current implementation of our V1 model is based on Li’s excitatory-inhibitory firing 577

rate network [29], following previous hypotheses of pyramidal and interneuron 578

connectivity for orientation selectivity in V1 [54,55]. To support and extend this 579

hypothesis, distinct connectivity schemas (following up V1 cell subtype 580

characterization) [85,86] could be tested (e.g. adding dysynaptic connections between 581

inhibitory interneurons) to better understand V1 intra-cortical computations. 582

Furthermore, modeling intra-layer interactions of V1 cells [43] could explain how visual 583

information is parallely processed and integrated by simple and complex cells [83], how 584

distinct chromatic opponencies (P-,K- and M-) are computed at each layer [87], and 585

how V1 responses affect SC activity (i.e. from layer 5) [88]. Testing contributions of 586

each of these chromatic pathways (at distinct single/double opponencies and polarities), 587

as well as distinct fusion mechanisms regarding feature integration, would define a more 588

detailed description of how visual features affect saliency map predictions. 589

Previous and current scanpath model predictions could be considered to be 590

insufficient due to the scene complexity and numerous factors (such as the task 591

specificity, scene semantics, etc.) simultaneously involved in saccade programming. 592

These factors increase overall errors on scanpath predictions, as systematic tendencies 593

increase over time [20,22,78,82], making late saccades difficult to predict. In that 594

aspect, in free-viewing tasks (when there is no task definition), top-down attention is 595

likely to be dependent on the internal state of the subject. Further understanding of 596
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high level attentional processes have only been approximated through statistical and 597

optimization techniques with fixation data. It has also been later observed that 598

fixations during free-viewing and visual search have distinct temporal properties. This 599

could explain that saliency and relevance are elicited differently during viewing time. 600

Latest literature on that aspect, discern two distinct patterns of fixations (either 601

ambient or focal) where subjects first observe the scene (possibly towards salient 602

regions), then focus their attention on regions that are relevant to them [69], and these 603

influences are mainly temporal. Its modelization for eye movements in combination with 604

memory processing is still under discussion. Current return mechanisms have long been 605

computed by inhibiting the regions of previous fixations (spatially-based), nonetheless, 606

IoR could also have feature-selective properties [89] to consider. 607

We suggest that not all fixations should have the same importance when evaluating 608

saliency predictions. Nature and synthetic scene images lack of semantic (man-made) 609

information, which might contribute to the aforementioned voluntary (top-down guided) 610

eye movements [90]. Acknowledging that objects are usually composed by the 611

combination of several features (either in shape, color, etc.), we should analyze if 612

low-level features are sufficient to perform complex categorical search tasks. 613

Extrastriate computations could allow the usage of object representations at 614

higher-level processing, introducing semantically-relevant information and several image 615

samples per category. Cortical processing of extrastriate areas (from V2 and V3) 616

towards temporal (V4 & IT) and dorsal (V5 & MT) pathways [91, Section II] [43] could 617

represent cortical activity at these distinct levels of processing, modeling in more detail 618

the computations within the two-stream hypothesis (what & where pathways). Color, 619

shape and motion processing in each of these areas could generate more accurate 620

representations of SC activity [23], producing more complex predictions such as 621

microsaccadic and smooth pursuit eye movements. 622

Future Work 623

Current and future implementations of the model are able to process dynamic stimuli as 624

to represent attention using videos. By simulating motion energy from V1 cells and MT 625

direction selective cells [28, Section 2.3.5], would allow our model to reproduce object 626

motion and flicker mechanisms found in the HVS. Moreover, foveation through more 627

plausible cortical mapping algorithms [92] could provide better spatial detail of the 628

cortical field organization of foveal and peripheral retinotopic regions and lateralization, 629

currently seen to reproduce V1/V2/V3 physiological responses. Adding to that, 630

hypercolumnar feature computations of geniculocortical pathways could be extended 631

with a higher number of orientation and scale sensitivities with self-invertible 2D 632

Log-Gabor filters [93]. In that regard, angle configuration pop-out effects and contour 633

detection computations [94,95] can be done by changing neuron connectivity and 634

orientation tuning modulations. 635

We aim in future implementations to model the impact of feedback in 636

cortico-cortical interactions with respect striate and extrastriate areas in the HVS. 637

Some of these regions project directly to SC, including the intermediate areas (pulvinar 638

and medial dorsal) and basal ganglia [23,63,67]. Our current implementation can be 639

extended with a large scale network of spiking neurons [96,97], also being able to learn 640

certain image patterns through spike-timing dependent plasticity (STDP) 641

mechanisms [98]. With such a network, the same model would be able to perform both 642

psychophysical and electrophysiological evaluations while providing novel 643

biologically-plausible computations with large scale image datasets. 644
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Conclusion 645

In this study we have presented a biologically-plausible model of visual attention by 646

mimicking visual mechanisms from retina to V1 using real images. From such, 647

computations at early visual areas of the HVS (i.e. RP, RGC, LGN and V1) are 648

performed by following physiological and psychophysical characteristics. Here we state 649

that lateral interactions of V1 cells are able to obtain real scene saliency maps and to 650

predict locations of visual fixations. We have also proposed novel scanpath computations 651

of scene visualization using a cortical magnification function. Our model outperforms 652

other biologically inspired saliency models in saliency predictions (specifically with 653

nature and synthetic images) and has a trend to acquire similar scanpath prediction 654

performance with respect other artificial models, outperforming them in saccade 655

amplitude correlations. The aim of this study, besides from acquiring state-of-the-art 656

results, is to explain how lateral connections can predict visual fixations and how these 657

can explain the role of V1 in this and other visual effects. In addition, we formulated 658

projections of recurrent and selective attention using the same model (simulating 659

frontoparietal top-down inhibition mechanisms). Our implementation of these, included 660

top-down projections from DLPFC, FEF and LIP (regarding visual selection and 661

inhibition of return mechanisms). We have shown how scanpath predictions improve by 662

parametrizing the inhibition of return, with highest performance at a size of 2 deg and a 663

decay time between 1 and 5 fixations. By processing low-level feature representations of 664

real images (considering statistics of wavelet coefficients for each object or feature 665

exemplar) and using them as top-down cues, we have been able to perform feature and 666

object search using the same computational architecture. Two search strategies are 667

presented, and we show that both the probability to gaze inside a ROI and the amount 668

of fixations inside that ROI increase with respect saliency. In previous studies, the same 669

model has been able to reproduce brightness [2] and chromatic [3] induction, as well as 670

explaining V1 cortical hyperexcitability as a indicator of visual discomfort [1]. With the 671

same parameters and without any type of training or optimization, NSWAM is also able 672

predict bottom-up and top-down attention for free-viewing and visual search tasks. 673

Model characteristics has been constrained (in both architecture and parametrization) 674

with human physiology and visual psychophysics, and can be considered as a simplified 675

and unified simulation of how low-level visual processes occur in the HVS. 676
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45. González-Aud́ıcana M, Otazu X, Fors O, Seco A. Comparison between Mallat’s 803
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