toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gerard Canal; Sergio Escalera; Cecilio Angulo edit   pdf
doi  openurl
  Title A Real-time Human-Robot Interaction system based on gestures for assistive scenarios Type Journal Article
  Year 2016 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU  
  Volume 149 Issue Pages 65-77  
  Keywords Gesture recognition; Human Robot Interaction; Dynamic Time Warping; Pointing location estimation  
  Abstract Natural and intuitive human interaction with robotic systems is a key point to develop robots assisting people in an easy and effective way. In this paper, a Human Robot Interaction (HRI) system able to recognize gestures usually employed in human non-verbal communication is introduced, and an in-depth study of its usability is performed. The system deals with dynamic gestures such as waving or nodding which are recognized using a Dynamic Time Warping approach based on gesture specific features computed from depth maps. A static gesture consisting in pointing at an object is also recognized. The pointed location is then estimated in order to detect candidate objects the user may refer to. When the pointed object is unclear for the robot, a disambiguation procedure by means of either a verbal or gestural dialogue is performed. This skill would lead to the robot picking an object in behalf of the user, which could present difficulties to do it by itself. The overall system — which is composed by a NAO and Wifibot robots, a KinectTM v2 sensor and two laptops — is firstly evaluated in a structured lab setup. Then, a broad set of user tests has been completed, which allows to assess correct performance in terms of recognition rates, easiness of use and response times.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB; Approved no  
  Call Number Admin @ si @ CEA2016 Serial 2768  
Permanent link to this record
 

 
Author Isabelle Guyon; Imad Chaabane; Hugo Jair Escalante; Sergio Escalera; Damir Jajetic; James Robert Lloyd; Nuria Macia; Bisakha Ray; Lukasz Romaszko; Michele Sebag; Alexander Statnikov; Sebastien Treguer; Evelyne Viegas edit  openurl
  Title A brief Review of the ChaLearn AutoML Challenge: Any-time Any-dataset Learning without Human Intervention Type Conference Article
  Year 2016 Publication AutoML Workshop Abbreviated Journal  
  Volume Issue 1 Pages 1-8  
  Keywords AutoML Challenge; machine learning; model selection; meta-learning; repre- sentation learning; active learning  
  Abstract The ChaLearn AutoML Challenge team conducted a large scale evaluation of fully automatic, black-box learning machines for feature-based classification and regression problems. The test bed was composed of 30 data sets from a wide variety of application domains and ranged across different types of complexity. Over six rounds, participants succeeded in delivering AutoML software capable of being trained and tested without human intervention. Although improvements can still be made to close the gap between human-tweaked and AutoML models, this competition contributes to the development of fully automated environments by challenging practitioners to solve problems under specific constraints and sharing their approaches; the platform will remain available for post-challenge submissions at http://codalab.org/AutoML.  
  Address New York; USA; June 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICML  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ GCE2016 Serial 2769  
Permanent link to this record
 

 
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera edit   pdf
doi  openurl
  Title Action Recognition by Pairwise Proximity Function Support Vector Machines with Dynamic Time Warping Kernels Type Conference Article
  Year 2016 Publication 29th Canadian Conference on Artificial Intelligence Abbreviated Journal  
  Volume 9673 Issue Pages 3-14  
  Keywords  
  Abstract In the context of human action recognition using skeleton data, the 3D trajectories of joint points may be considered as multi-dimensional time series. The traditional recognition technique in the literature is based on time series dis(similarity) measures (such as Dynamic Time Warping). For these general dis(similarity) measures, k-nearest neighbor algorithms are a natural choice. However, k-NN classifiers are known to be sensitive to noise and outliers. In this paper, a new class of Support Vector Machine that is applicable to trajectory classification, such as action recognition, is developed by incorporating an efficient time-series distances measure into the kernel function. More specifically, the derivative of Dynamic Time Warping (DTW) distance measure is employed as the SVM kernel. In addition, the pairwise proximity learning strategy is utilized in order to make use of non-positive semi-definite (PSD) kernels in the SVM formulation. The recognition results of the proposed technique on two action recognition datasets demonstrates the ourperformance of our methodology compared to the state-of-the-art methods. Remarkably, we obtained 89 % accuracy on the well-known MSRAction3D dataset using only 3D trajectories of body joints obtained by Kinect  
  Address Victoria; Canada; May 2016  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference AI  
  Notes HuPBA;MILAB; Approved no  
  Call Number Admin @ si @ BGE2016b Serial 2770  
Permanent link to this record
 

 
Author Jun Wan; Yibing Zhao; Shuai Zhou; Isabelle Guyon; Sergio Escalera edit   pdf
doi  openurl
  Title ChaLearn Looking at People RGB-D Isolated and Continuous Datasets for Gesture Recognition Type Conference Article
  Year 2016 Publication 29th IEEE Conference on Computer Vision and Pattern Recognition Worshops Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In this paper, we present two large video multi-modal datasets for RGB and RGB-D gesture recognition: the ChaLearn LAP RGB-D Isolated Gesture Dataset (IsoGD)and the Continuous Gesture Dataset (ConGD). Both datasets are derived from the ChaLearn Gesture Dataset
(CGD) that has a total of more than 50000 gestures for the “one-shot-learning” competition. To increase the potential of the old dataset, we designed new well curated datasets composed of 249 gesture labels, and including 47933 gestures manually labeled the begin and end frames in sequences.Using these datasets we will open two competitions
on the CodaLab platform so that researchers can test and compare their methods for “user independent” gesture recognition. The first challenge is designed for gesture spotting
and recognition in continuous sequences of gestures while the second one is designed for gesture classification from segmented data. The baseline method based on the bag of visual words model is also presented.
 
  Address Las Vegas; USA; July 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes HuPBA;MILAB; Approved no  
  Call Number Admin @ si @ WZZ2016 Serial 2771  
Permanent link to this record
 

 
Author Florin Popescu; Stephane Ayache; Sergio Escalera; Xavier Baro; Cecile Capponi; Patrick Panciatici; Isabelle Guyon edit   pdf
openurl 
  Title From geospatial observations of ocean currents to causal predictors of spatio-economic activity using computer vision and machine learning Type Conference Article
  Year 2016 Publication European Geosciences Union General Assembly Abbreviated Journal  
  Volume 18 Issue Pages  
  Keywords  
  Abstract The big data transformation currently revolutionizing science and industry forges novel possibilities in multimodal analysis scarcely imaginable only a decade ago. One of the important economic and industrial problems that stand to benefit from the recent expansion of data availability and computational prowess is the prediction of electricity demand and renewable energy generation. Both are correlates of human activity: spatiotemporal energy consumption patterns in society are a factor of both demand (weather dependent) and supply, which determine cost – a relation expected to strengthen along with increasing renewable energy dependence. One of the main drivers of European weather patterns is the activity of the Atlantic Ocean and in particular its dominant Northern Hemisphere current: the Gulf Stream. We choose this particular current as a test case in part due to larger amount of relevant data and scientific literature available for refinement of analysis techniques.
This data richness is due not only to its economic importance but also to its size being clearly visible in radar and infrared satellite imagery, which makes it easier to detect using Computer Vision (CV). The power of CV techniques makes basic analysis thus developed scalable to other smaller and less known, but still influential, currents, which are not just curves on a map, but complex, evolving, moving branching trees in 3D projected onto a 2D image.
We investigate means of extracting, from several image modalities (including recently available Copernicus radar and earlier Infrared satellites), a parameterized presentation of the state of the Gulf Stream and its environment that is useful as feature space representation in a machine learning context, in this case with the EC’s H2020-sponsored ‘See.4C’ project, in the context of which data scientists may find novel predictors of spatiotemporal energy flow. Although automated extractors of Gulf Stream position exist, they differ in methodology and result. We shall attempt to extract more complex feature representation including branching points, eddies and parameterized changes in transport and velocity. Other related predictive features will be similarly developed, such as inference of deep water flux long the current path and wider spatial scale features such as Hough transform, surface turbulence indicators and temperature gradient indexes along with multi-time scale analysis of ocean height and temperature dynamics. The geospatial imaging and ML community may therefore benefit from a baseline of open-source techniques useful and expandable to other related prediction and/or scientific analysis tasks.
 
  Address Vienna; Austria; April 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference EGU  
  Notes HuPBA;MV; Approved no  
  Call Number Admin @ si @ PAE2016 Serial 2772  
Permanent link to this record
 

 
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera edit   pdf
doi  openurl
  Title Support Vector Machines with Time Series Distance Kernels for Action Classification Type Conference Article
  Year 2016 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 1-7  
  Keywords  
  Abstract Despite the outperformance of Support Vector Machine (SVM) on many practical classification problems, the algorithm is not directly applicable to multi-dimensional trajectories having different lengths. In this paper, a new class of SVM that is applicable to trajectory classification, such as action recognition, is developed by incorporating two efficient time-series distances measures into the kernel function.
Dynamic Time Warping and Longest Common Subsequence distance measures along with their derivatives are
employed as the SVM kernel. In addition, the pairwise proximity learning strategy is utilized in order to make use of non-positive semi-definite kernels in the SVM formulation. The proposed method is employed for a challenging classification problem: action recognition by depth cameras using only skeleton data; and evaluated on three benchmark action datasets. Experimental results demonstrate the outperformance of our methodology compared to the state-ofthe-art on the considered datasets.
 
  Address Lake Placid; NY (USA); March 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes HuPBA;MILAB; Approved no  
  Call Number Admin @ si @ BGE2016a Serial 2773  
Permanent link to this record
 

 
Author Debora Gil; Sergio Vera; Agnes Borras; Albert Andaluz; Miguel Angel Gonzalez Ballester edit   pdf
doi  openurl
  Title Anatomical Medial Surfaces with Efficient Resolution of Branches Singularities Type Journal Article
  Year 2017 Publication Medical Image Analysis Abbreviated Journal MIA  
  Volume 35 Issue Pages 390-402  
  Keywords Medial Representations; Shape Recognition; Medial Branching Stability ; Singular Points  
  Abstract Medial surfaces are powerful tools for shape description, but their use has been limited due to the sensibility existing methods to branching artifacts. Medial branching artifacts are associated to perturbations of the object boundary rather than to geometric features. Such instability is a main obstacle for a con dent application in shape recognition and description. Medial branches correspond to singularities of the medial surface and, thus, they are problematic for existing morphological and energy-based algorithms. In this paper, we use algebraic geometry concepts in an energy-based approach to compute a medial surface presenting a stable branching topology. We also present an ecient GPU-CPU implementation using standard image processing tools. We show the method computational eciency and quality on a custom made synthetic database. Finally, we present some results on a medical imaging application for localization of abdominal pathologies.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.060; 600.096; 600.075; 600.145 Approved no  
  Call Number Admin @ si @ GVB2017 Serial 2775  
Permanent link to this record
 

 
Author Daniel Hernandez; Alejandro Chacon; Antonio Espinosa; David Vazquez; Juan Carlos Moure; Antonio Lopez edit   pdf
openurl 
  Title Stereo Matching using SGM on the GPU Type Report
  Year 2016 Publication Programming and Tuning Massively Parallel Systems Abbreviated Journal PUMPS  
  Volume Issue Pages  
  Keywords CUDA; Stereo; Autonomous Vehicle  
  Abstract Dense, robust and real-time computation of depth information from stereo-camera systems is a computationally demanding requirement for robotics, advanced driver assistance systems (ADAS) and autonomous vehicles. Semi-Global Matching (SGM) is a widely used algorithm that propagates consistency constraints along several paths across the image. This work presents a real-time system producing reliable disparity estimation results on the new embedded energy efficient GPU devices. Our design runs on a Tegra X1 at 42 frames per second (fps) for an image size of 640x480, 128 disparity levels, and using 4 path directions for the SGM method.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference PUMPS  
  Notes ADAS; 600.085; 600.087; 600.076 Approved no  
  Call Number ADAS @ adas @ HCE2016b Serial 2776  
Permanent link to this record
 

 
Author Joan M. Nuñez; Jorge Bernal; F. Javier Sanchez; Fernando Vilariño edit   pdf
doi  openurl
  Title Growing Algorithm for Intersection Detection (GRAID) in branching patterns Type Journal Article
  Year 2015 Publication Machine Vision and Applications Abbreviated Journal MVAP  
  Volume 26 Issue 2 Pages 387-400  
  Keywords Bifurcation ; Crossroad; Intersection ;Retina ; Vessel  
  Abstract Analysis of branching structures represents a very important task in fields such as medical diagnosis, road detection or biometrics. Detecting intersection landmarks Becomes crucial when capturing the structure of a branching pattern. We present a very simple geometrical model to describe intersections in branching structures based on two conditions: Bounded Tangency condition (BT) and Shortest Branch (SB) condition. The proposed model precisely sets a geometrical characterization of intersections and allows us to introduce a new unsupervised operator for intersection extraction. We propose an implementation that handles the consequences of digital domain operation that,unlike existing approaches, is not restricted to a particular scale and does not require the computation of the thinned pattern. The new proposal, as well as other existing approaches in the bibliography, are evaluated in a common framework for the first time. The performance analysis is based on two manually segmented image data sets: DRIVE retinal image database and COLON-VESSEL data set, a newly created data set of vascular content in colonoscopy frames. We have created an intersection landmark ground truth for each data set besides comparing our method in the only existing ground truth. Quantitative results confirm that we are able to outperform state-of-the-art performancelevels with the advantage that neither training nor parameter tuning is needed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ;SIAI Approved no  
  Call Number Admin @ si @MBS2015 Serial 2777  
Permanent link to this record
 

 
Author Gloria Fernandez Esparrach; Jorge Bernal; Maria Lopez Ceron; Henry Cordova; Cristina Sanchez Montes; Cristina Rodriguez de Miguel; F. Javier Sanchez edit   pdf
doi  openurl
  Title Exploring the clinical potential of an automatic colonic polyp detection method based on the creation of energy maps Type Journal Article
  Year 2016 Publication Endoscopy Abbreviated Journal END  
  Volume 48 Issue 9 Pages 837-842  
  Keywords  
  Abstract Background and aims: Polyp miss-rate is a drawback of colonoscopy that increases significantly in small polyps. We explored the efficacy of an automatic computer vision method for polyp detection.
Methods: Our method relies on a model that defines polyp boundaries as valleys of image intensity. Valley information is integrated into energy maps which represent the likelihood of polyp presence.
Results: In 24 videos containing polyps from routine colonoscopies, all polyps were detected in at least one frame. Mean values of the maximum of energy map were higher in frames with polyps than without (p<0.001). Performance improved in high quality frames (AUC= 0.79, 95%CI: 0.70-0.87 vs 0.75, 95%CI: 0.66-0.83). Using 3.75 as maximum threshold value, sensitivity and specificity for detection of polyps were 70.4% (95%CI: 60.3-80.8) and 72.4% (95%CI: 61.6-84.6), respectively.
Conclusion: Energy maps showed a good performance for colonic polyp detection. This indicates a potential applicability in clinical practice.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MV; Approved no  
  Call Number Admin @ si @FBL2016 Serial 2778  
Permanent link to this record
 

 
Author Gloria Fernandez Esparrach; Jorge Bernal; Cristina Rodriguez de Miguel; Debora Gil; Fernando Vilariño; Henry Cordova; Cristina Sanchez Montes; Isis Ara edit  openurl
  Title Utilidad de la visión por computador para la localización de pólipos pequeños y planos Type Conference Article
  Year 2016 Publication XIX Reunión Nacional de la Asociación Española de Gastroenterología, Gastroenterology Hepatology Abbreviated Journal  
  Volume 39 Issue 2 Pages 94  
  Keywords  
  Abstract  
  Address Madrid (Spain)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference AEGASTRO  
  Notes MV; IAM; 600.097;SIAI Approved no  
  Call Number Admin @ si @FBR2016 Serial 2779  
Permanent link to this record
 

 
Author Jordina Torrents-Barrena; Aida Valls; Petia Radeva; Meritxell Arenas; Domenec Puig edit  doi
openurl 
  Title Automatic Recognition of Molecular Subtypes of Breast Cancer in X-Ray images using Segmentation-based Fractal Texture Analysis Type Book Chapter
  Year 2015 Publication Artificial Intelligence Research and Development Abbreviated Journal  
  Volume 277 Issue Pages 247 - 256  
  Keywords  
  Abstract Breast cancer disease has recently been classified into four subtypes regarding the molecular properties of the affected tumor region. For each patient, an accurate diagnosis of the specific type is vital to decide the most appropriate therapy in order to enhance life prospects. Nowadays, advanced therapeutic diagnosis research is focused on gene selection methods, which are not robust enough. Hence, we hypothesize that computer vision algorithms can offer benefits to address the problem of discriminating among them through X-Ray images. In this paper, we propose a novel approach driven by texture feature descriptors and machine learning techniques. First, we segment the tumour part through an active contour technique and then, we perform a complete fractal analysis to collect qualitative information of the region of interest in the feature extraction stage. Finally, several supervised and unsupervised classifiers are used to perform multiclass classification of the aforementioned data. The experimental results presented in this paper support that it is possible to establish a relation between each tumor subtype and the extracted features of the patterns revealed on mammograms.  
  Address  
  Corporate Author Thesis  
  Publisher IOS Press Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Frontiers in Artificial Intelligence and Applications Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @TVR2015 Serial 2780  
Permanent link to this record
 

 
Author Francesco Ciompi; Simone Balocco; Juan Rigla; Xavier Carrillo; Josefina Mauri; Petia Radeva edit  doi
openurl 
  Title Computer-Aided Detection of Intra-Coronary Stent in Intravascular Ultrasound Sequences Type Journal Article
  Year 2016 Publication Medical Physics Abbreviated Journal MP  
  Volume 43 Issue 10 Pages  
  Keywords  
  Abstract Purpose: An intraluminal coronary stent is a metal mesh tube deployed in a stenotic artery during Percutaneous Coronary Intervention (PCI), in order to prevent acute vessel occlusion. The identication of struts location and the denition of the stent shape are relevant for PCI planning 15 and for patient follow-up. We present a fully-automatic framework for Computer-Aided Detection
(CAD) of intra-coronary stents in Intravascular Ultrasound (IVUS) image sequences. The CAD system is able to detect stent struts and estimate the stent shape.

Methods: The proposed CAD uses machine learning to provide a comprehensive interpretation of the local structure of the vessel by means of semantic classication. The output of the classication 20 stage is then used to detect struts and to estimate the stent shape. The proposed approach is validated using a multi-centric data-set of 1,015 images from 107 IVUS sequences containing both metallic and bio-absorbable stents.

Results: The method was able to detect structs in both metallic stents with an overall F-measure of 77.7% and a mean distance of 0.15 mm from manually annotated struts, and in bio-absorbable 25 stents with an overall F-measure of 77.4% and a mean distance of 0.09 mm from manually annotated struts.

Conclusions: The results are close to the inter-observer variability and suggest that the system has the potential of being used as method for aiding percutaneous interventions.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ CBR2016 Serial 2819  
Permanent link to this record
 

 
Author Mariella Dimiccoli edit   pdf
doi  openurl
  Title Fundamentals of cone regression Type Journal
  Year 2016 Publication Journal of Statistics Surveys Abbreviated Journal  
  Volume 10 Issue Pages 53-99  
  Keywords cone regression; linear complementarity problems; proximal operators.  
  Abstract Cone regression is a particular case of quadratic programming that minimizes a weighted sum of squared residuals under a set of linear inequality constraints. Several important statistical problems such as isotonic, concave regression or ANOVA under partial orderings, just to name a few, can be considered as particular instances of the cone regression problem. Given its relevance in Statistics, this paper aims to address the fundamentals of cone regression from a theoretical and practical point of view. Several formulations of the cone regression problem are considered and, focusing on the particular case of concave regression as an example, several algorithms are analyzed and compared both qualitatively and quantitatively through numerical simulations. Several improvements to enhance numerical stability and bound the computational cost are proposed. For each analyzed algorithm, the pseudo-code and its corresponding code in Matlab are provided. The results from this study demonstrate that the choice of the optimization approach strongly impacts the numerical performances. It is also shown that methods are not currently available to solve efficiently cone regression problems with large dimension (more than many thousands of points). We suggest further research to fill this gap by exploiting and adapting classical multi-scale strategy to compute an approximate solution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 1935-7516 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; Approved no  
  Call Number Admin @ si @Dim2016a Serial 2783  
Permanent link to this record
 

 
Author Jean-Pascal Jacob; Mariella Dimiccoli; L. Moisan edit   pdf
url  openurl
  Title Active skeleton for bacteria modelling Type Journal Article
  Year 2017 Publication Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization Abbreviated Journal CMBBE  
  Volume 5 Issue 4 Pages 274-286  
  Keywords  
  Abstract The investigation of spatio-temporal dynamics of bacterial cells and their molecular components requires automated image analysis tools to track cell shape properties and molecular component locations inside the cells. In the study of bacteria aging, the molecular components of interest are protein aggregates accumulated near bacteria boundaries. This particular location makes very ambiguous the correspondence between aggregates and cells, since computing accurately bacteria boundaries in phase-contrast time-lapse imaging is a challenging task. This paper proposes an active skeleton formulation for bacteria modelling which provides several advantages: an easy computation of shape properties (perimeter, length, thickness and orientation), an improved boundary accuracy in noisy images and a natural bacteria-centred coordinate system that permits the intrinsic location of molecular components inside the cell. Starting from an initial skeleton estimate, the medial axis of the bacterium is obtained by minimising an energy function which incorporates bacteria shape constraints. Experimental results on biological images and comparative evaluation of the performances validate the proposed approach for modelling cigar-shaped bacteria like Escherichia coli. The Image-J plugin of the proposed method can be found online at http://fluobactracker.inrialpes.fr.  
  Address  
  Corporate Author Thesis  
  Publisher Taylor & Francis Group Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; Approved no  
  Call Number Admin @ si @JDM2017 Serial 2784  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: