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Abstract. In the context of human action recognition using skeleton
data, the 3D trajectories of joint points may be considered as multi-
dimensional time series. The traditional recognition technique in the lit-
erature is based on time series dis(similarity) measures (such as Dynamic
Time Warping). For these general dis(similarity) measures, k -nearest
neighbor algorithms are a natural choice. However, k -NN classifiers are
known to be sensitive to noise and outliers. In this paper, a new class of
Support Vector Machine that is applicable to trajectory classification, such
as action recognition, is developed by incorporating an efficient time-series
distances measure into the kernel function. More specifically, the deriva-
tive of Dynamic Time Warping (DTW) distance measure is employed as
the SVM kernel. In addition, the pairwise proximity learning strategy is
utilized in order to make use of non-positive semi-definite (PSD) kernels in
the SVM formulation. The recognition results of the proposed technique on
two action recognition datasets demonstrates the ourperformance of our
methodology compared to the state-of-the-art methods. Remarkably, we
obtained 89% accuracy on the well-known MSRAction3D dataset using
only 3D trajectories of body joints obtained by Kinect.

1 Introduction

Support Vector Machine (SVM) is one of the leading pattern classification
techniques used in various vision application tasks, such as image and video
recognition [29]. Given labeled training data of the form {(xi, yi)}m

i=1, with
yi ∈ {−1,+1}1, the standard form of SVM finds a hyperplane which best sepa-
rates the data by minimizing a constrained optimization problem:

τ(w, ξ) =
1
2
||w||2 + C

m∑

i=1

ξi (1)

1 In our formulation, the input samples, xi, are not restricted to be a subset of Rn

and can be any set, e.g. set of images or videos.
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subject to: yi((w.xi) + b) + ξi ≥ 1
ξi ≥ 0

where ξi are slack variables and C > 0 is the tradeoff between a large margin
and a small error penalty.

The cornerstone of SVM is that non-linear decision boundaries can be learnt
using the so called ‘kernel trick’. A Kernel is a function K : X × X �→ R, such
that for all xi, i = 1, . . . ,m yields to a symmetric positive semi-definite (PSD)
matrix K, where Kij = κ(xi, xj). Indeed, the kernel function implicitly maps
their inputs into high-dimensional feature spaces, x �→ Φ(x). Two common kernel
functions are the Gaussian Kernel and linear kernel.

In the dual formulation, the SVM algorithm maximizes:

W (a) =
m∑

i=1

αi − 1
2

∑

ij

αiαjyiyjκ(xi, xj) (2)

subject to: 0 ≤ αi ≤ C and
∑

αiyi

= 0

The decision function is given by:

f(x) = sign

( m∑

i=1

yiαiκ(x, xi) + b

)
(3)

where the threshold b is defined as:

b = yi −
m∑

i=1

yiαiκ(xi, xj) (4)

In this paper, we aim to classify human actions by employing spatio-temporal
information of skeleton joint points, i.e. the real positions of body joints over
the time. More specifically, we use the 3D trajectories of dominant body joints
obtained by the Kinect camera. These trajectories encode significant discrimina-
tive information and is sufficient for human beings to recognize different actions
[7]. In addition, according to an influential computational model of human visual
attention theory [21], visual attention leads to visual salient entities, which pro-
vide selective visual information to make human visual perception efficient and
effective. Trajectories of skeleton joints are visual salient points of human body,
and their movements in 4D space reflect motion semantics.

From the classification point of view, these trajectories may be considered
as multi-dimensional time series. The traditional recognition technique in the
literature is based on time series dis(similarity) measures (such as Dynamic
Time Warping). For these general dis(similarity) measures, k -nearest neighbor
algorithms are a natural choice. In practice, given two actions represented by
two multi dimensional time series, a time series distance measure calculates the
distance between two actions. To classify an unlabeled test action (sample), its
distance to all training samples is calculated. Consequently, the nearest neighbor
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algorithm is employed for classification. Given a test action, we calculate its
distance to all training actions, e.x. by using DTW, and the target of the closest
sample is predicted as the target class.

In general, the k -NN classification algorithms work reasonably well; but are
known to be sensitive to noise and outliers. Since SVMs often outperform k -NNs
on many practical classification problems where a natural choice of PSD kernels
exists, it is desirable to extend the applicability of kernel SVMs.

In our action classification problem, however, time series distances measures
are generally non-PSD kernels and basic SVM formulations are not directly
applicable. To include non-PSD kernels in SVM, several ad-hoc strategies have
been proposed. The straightforward strategy is to simply overlook the fact that
the kernel should be non-PSD. In this case, the existence of a Reproducing Kernel
Hilbert Space is not guaranteed [18] and it is no longer clear what is going to be
optimized.

Another strategy, which has been applied in our work, is based on pairwise
proximity function SVM(ppfSVM) [5]. This strategy involves the construction of
a set of inputs such that each sample is represented with its dis(similarity) to all
other samples in the dataset. The basic SVM is then applied to the transformed
data in the usual way. As a consequence, sparsity of the solution may be lost. The
ppfSVM is related to the arbitrary kernel SVM, a special case of the generalized
Support Vector Machines [13]. The name is due to the fact that no restrictions
such as positive semi-definiteness, differentiability or continuity are put on the
kernel function.

In this paper, we investigate the effectiveness of this strategy for human
action classification when the pairwise similarities are based on time-series
distances measures. More specifically, we demonstrate the effectiveness of the
derivative of Dynamic Time Warping (DTW), as SVM kernel function. The
experimental results on two benchmark datasets prove the outperformance of
the proposed method compared to the state-of-the-art techniques.

The contributions of our work are as follows: (1) we propose a new class
of Support Vector Machine (SVM) that is applicable to trajectory classifica-
tion, such as action recognition; (2) we introduce the derivatives of Dynamic
Time Warping distance measures as pairwise similarity measures for SVM kernel;
(3) we demonstrate the validity of the proposed methodology for action/gesture
classification.

The rest of the paper is organized as follows: Sect. 2 reviews the related work
on action recognition, and briefly introduces Dynamic Time Warping. Section 3
presents our methodology for action recognition. Section 4 evaluates the proposed
method and Sect. 5 concludes the paper.

2 Related Work

2.1 Action Recognition

The fast and reliable recognition of human actions from captured videos has been
a goal of computer vision for decades. Robust action recognition has diverse
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applications including gaming, sign language interpretation, human-computer
interaction (HCI), surveillance, and health care. Understanding gestures/actions
from a real-time visual stream is a challenging task for current computer vision
algorithms. Over the last decade, spatial-temporal (ST) volume-based holistic
approaches and local ST feature representations have been reportedly achieved
good performance on some action datasets, but they are still far from being able
to express the effective visual information for efficient high-level interpretation.

Various representational methodologies have been proposed to recognize
human actions/gestures. Based on extracted salient points or regions [9] from
ST volume, several local ST descriptor methods, such as HOG/HOF [10] and
extended SURF [3] have been widely used for human action recognition from
RGB data. Inspired from the text mining area, the intermediate level feature
descriptor for RGB videos, Bag-of-Word (BoW) [12,23], has been developed due
to its semantic representation and robustness to noise. Recently, BoW-based
methods have been extended to depth data.

Development of low-cost depth sensors with acceptable accuracy has greatly
simplified the task of action recognition [19]. Most importantly, the recent
release of the Microsoft Kinect camera and its evolving skeleton joints detec-
tion technique in late 2011 led to a substantial revolutionary effect in the field
of Computer Vision and created a wide range of opportunities for demanding
applications. Shotton et al. [19] proposed one of the greatest advances in the
extraction of the human body pose from depth data, which is provided as a part
of the Kinect platform. Their work enables us to recover 3D positions of skeleton
joints in real time and with reasonable accuracy.

Since 2011, hundreds of studies are devoted to action analysis using depth
information. In [28], visual features for activity recognition are computed based
on the spatial and temporal differences among detected joints. This feature set
contains information about static posture, motion, and offset. Then, Naive Bayes
Nearest Neighbor method was applied for the classification task. Alternatively,
a histogram of 3-D joint locations (HOJ3-D) for body posture representation is
proposed in [27]. In this representation, the 3D space is partitioned into bins
using a spherical coordinate system, and the HOJ3-D histogram is constructed
by casting joints into certain bins. After applying linear discriminant analysis
(LDA) for dimensionality reduction, HOJ3-D vectors are clustered into k posture
visual words. The temporal behaviour of these visual words is coded by discrete
HMMs. Reyes et al. [16] used 15 joints from Primesense API to represent a
human model. Dynamic Time Warping (DTW) with weighted joints is used to
achieve real-time action recognition. Sung et al. [20] proposed a 459-element
feature vector from various body joints for each frame, and then a two-layered
Maximum Entropy Markov Model (MEMM) was applied to recognize single per-
son activities. Despite active research for action/gesture recognition, none of the
previous skeleton-based approaches considers a multiple classifier system phi-
losophy. In [6], Bag-of-Visual-and-Depth-Words defined containing a vocabulary
from RGB and depth sequences. This novel representation was also used to per-
form multi-modal action recognition. In [1], the authors proposed an ensemble
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Fig. 1. Top left: two time series which are similar but out of phase produce a large
Euclidean distance. Bottom left: this can be corrected by DTWs nonlinear alignment.
Right: to align the signals we construct a warping matrix, and search for the optimal
warping path

of five action learning techniques, each performing the recognition task from a
different perspective and combined the outputs of these classifiers based on the
Dempster-Shafer combination theory.

2.2 Dynamic Time Warping

Dynamic Time Warping (DTW) is a well-known algorithm which aims to com-
pare and align two temporal sequences, taking into account that sequences may
vary in length (time) [16]. DTW employs the dynamic programming technique to
find the minimal distance between two time series, where sequences are warped
by stretching or shrinking the time dimension. Although it was originally devel-
oped for speech recognition [17], it has also been employed in many other areas
like handwriting recognition, econometrics, and action recognition.

An alignment between two time series can be represented by a warping path
which minimizes the cumulative distance, shown in Fig. 1. The DTW distance
between time series x and y of length n and m will be recursively defined as:

DTW (i, j) = d(i, j) + min

⎧
⎪⎨

⎪⎩

DTW (i, j − 1)
DTW (i − 1, j)
DTW (i − 1, j − 1)

Here, d(i, j) is the square Euclidean distance of xi and yj .

3 The Proposed Algorithm

The proposed algorithm works as follows:
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1. Feature extraction: Given a depth image, 20 joints of the human body can
be tracked by the skeleton tracker. Instead of using the positions of joints, we
employ the relative position of each joint to the torso at each frame, as more
discriminative and intuitive 3D joint features.

2. Compute non-PSD kernels: we compute the pairwise distance of each
normalized 3D trajectory to other trajectories, using the derivative of DTW,
as described in following subsections.

3. Classification: we train the ppfSVM using the computed kernel and evaluate
the model on unseen test samples.

3.1 Kernels from Pairwise Data

According to [5], it is assumed that instead of a standard kernel function, all
that is available is a proximity function, P : X × X �→ R. No restrictions are
placed on the function P , not symmetry nor even continuity. The mapping Φ(x)
is defined by:

Φ(x) : x �→ (P (x, x1), P (x, x2), . . . , P (x, xm)T (5)

where xi, i = 1, . . . ,m are the examples in dataset. Here, we represent each
sample xi by xi = Φm(xi) i.e. an m-dimensional vector containing proximities
to all other samples in the dataset. Let P denote the m × m matrix with entries
P (xi, xj), i, j = 1, . . . ,m. Using the linear kernel on this data representation,
the resulting kernel matrix becomes K = PPT . In this case the decision rule (3)
simplifies to

f(x) = sign

( m∑

i=1

yiαiPΦm(x) + b

)
(6)

All elements of Φm(xi) must be computed when classifying a point x.

3.2 Kernel Using Derivative of Dynamic Time Warping Distance

Despite the success of time series dis(similarity) measures they may fail in some
situations. For example, since the DTW algorithm aims to explain variability in
the Y-axis by warping the X-axis, it may results in unintuitive alignments where
a single point on one sequence maps onto a large subsection of the other sequence;
which is referred to as “singularity” in the related literature [8]. Also, they may
fail to find obvious, natural alignments of two time series simply because a feature
(i.e. peak, valley, inflection point, plateau etc.) in one series is slightly higher or
lower than its corresponding feature in the other time series.

To deal with such problems, the derivatives version of DTW are employed in
this work in order to consider the higher level features. This modified version is
named Derivative DTW (DDTW) as defined as following:

DDTW (x, y) = DTW (∇x,∇y) (7)

where ∇x and ∇y are the first discrete derivatives of x and y.
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Fig. 2. Some example gestures in the Chaleran dataset are very easy to be confused,
even from human visual perception. (a) Che vuoi vs. Che due palle. For the Che vuoi
gesture, both hands are in front of the chest area; where for Che due palle gesture
they are near the waist region. (b) Vanno d’accordo vs. Cos hai combinato: both hand
positions are very close and with the same motion directions; (c) both gestures, Si sono
messid’accordo and non ce ne piu, require hand rotations; (d) four gestures, Furbo,
seipazzo, buonissimo, and cosatifarei are required with the finger pointing to the head
area, which cannot be easily determined, even with human eyes.

4 Experimental Evaluation

Here, we present the experimental details of evaluation, including the datasets
used, settings of the experiments, as well as the obtained results. The codes were
implemented in C/C++ with an interface in Matlab and is available upon request.

4.1 Datasets

We evaluated our framework on two publicly available datasets: the Multi-modal
Gesture Recognition Challenge 2013 (Chalearn) and MSR Action3D.

Chalearn Dataset: This dataset is a newly released large video database of
13,858 gestures from a lexicon of 20 Italian gesture categories recorded with
a Kinect camera, including audio, skeletal model, user mask, RGB and depth
images [4]. It contains image sequences capturing 27 subjects performing natural
communicative gestures and speaking in fluent Italian, and is divided into devel-
opment, validation and test parts. We conducted our experiments on the depth
images of development and validation samples which contains 11,116 gestures
across over 680 depth sequences. Each sequence lasts between 1 and 2 min and
contains between 8 and 20 gesture samples, around 1,800 frames. Some examples
of RGB images are shown in Fig. 2.

MSRAction3D Dataset: This dataset [11] is a well-known benchmark dataset
for 3D action recognition. This dataset contains 20 actions, including high arm
wave, horizontal arm wave, hammer, hand catch, forward punch, high throw,
draw x, draw tick, draw circle, hand clap, two hand wave, side-boxing, bend,
forward kick, side kick, jogging, tennis swing, tennis serve, golf swing, pick up &
throw. Each action was performed 2 or 3 times by each subject. Skeleton joint
data of each frame is available having a variety of motions related to arms, legs,
torso, and their combinations. In total, there are 567 depth map sequences with
a resolution of 320 × 240.
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4.2 Classification Results

For Chalearn dataset, the classification performance is obtained by means of
stratified 5-fold cross-validation. For MSR Action3D dataset, many studies follow
the experimental setting of Li et al. [11], such that they first divide the 20 actions
into three subsets, each having 8 actions. For each subset, they perform three
tests. In test one and two, 1/3 and 2/3 of the samples were used as training
samples and the rest as testing samples. In the third test, half of the subjects
are used as training and the rest subjects as testing. The experimental results on
the first two tests are generally very promising, mainly more than 90 % accuracy.
On the third test, however, the recognition performance dramatically decreases.
It shows that many of these methods do not have good generalization ability
when a different subject is performing the action, even in the same environmental
settings. In order to have more reliable results, we followed the same experimental
setup of [15,25]. In this setting, actors 1,3,5,7, and 9 are used for training and
the rest for testing.

The summaries of the results are reported in Table 1 for Chalearn and
MSRAction3D datasets. In these tables, accuracies of traditional k-NN-based
techniques using DDTW distance measures along with the corresponding accu-
racies using ppfSVMs are reported. It is important to note the outperformance of
the results in comparison with the traditional kNN-based classifiers. The result
are quite promising, considering the facts that the skeleton tracker sometimes
fails and the tracked joint positions are quite noisy. In addition, the confusion

Fig. 3. Confusion matrices of the proposed technique on the Chalearn dataset.
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Average classification accuracy=89.09
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Fig. 4. Confusion matrices of the proposed technique on the MSRAction3D dataset.

Table 1. Classification accuracy of different learners on the Chalearn and MSRAc-
tion3D datasets.

MSRAction3D dataset Chalearn dataset

K-NN 80.12 68.90

ppfSVM 89.09 77.85

matrix of the proposed classification algorithm for these datasets are demon-
strated in Figs. 3 and 4. It is important to note the outperformance of the results
in comparison with the traditional kNN-based classifiers. The result are quite
promising, considering the facts that the skeleton tracker sometimes fails and
the tracked joint positions are quite noisy.

We then compare our classification results on MSRAction3D dataset with
state-of-the-art methods. Table 2 shows the accuracy of our method and the rival
methods on this dataset based on the cross-subject test setting [11]. Most studies
use depth data in addition to skeleton joint information. However, processing
sequences of depth images is much more computationally intensive.

The results provided in Table 2 along with the confusion matrix depicted
in Figs. 3 and 4 demonstrate the superiority of the proposed methodology.
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Table 2. Comparing classification accuracy of our method with the state-of-the-art
methods on the MSRAction3D dataset.

Method Accuracy

Studies employed depth data

Action Graph [11] 74.70

HON4D [15] 85.85

Vieira et al. [22] 78.20

Random Occupancy Patterns [24] 86.50

DMM-LBP-FF [2] 87.90

Studies employed only skeleton data

Actionlet Ensemble [26] 88.20

Histogram of 3D Joint [27] 78.97

GB-RBM & HMM [14] 80.20

Ensemble classification [1] 84.85

Proposed method 89.09

By only considering the skeleton data, our results achieved the accuracies of
many works based on depth data Considering the fact that we have only
employed the skeleton data, not depth sequences, the results are promising. The
confusion matrix also reveals that almost all classes, except the “Hammer” class
have been classified very well. This is due to fact that skeleton tracker sometimes
fails and the tracked joint positions are quite noisy.

5 Conclusion

In this paper, we tackled the problem of human action classification using the
3D trajectories of body joint positions over the time. To do that, we utilized
the derivatives of two time series distance measures, including Dynamic Time
Warping and Longest Common subsequences. However, instead of employing
these general measures as a distance measure for k-NN, we transformed these
measures using the pairwise proximity function in order to be used for powerful
SVM classification algorithm. Comparing the recognition results of the proposed
methods with state-of-the-art techniques on two action recognition datasets,
showed significant performance improvements. Remarkably, we obtained 89 %
accuracy on the well-known MSRAction3D dataset using only 3D trajectories of
body joints obtained by Kinect.
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