toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Katerine Diaz; Francesc J. Ferri; W. Diaz edit  doi
openurl 
  Title Incremental Generalized Discriminative Common Vectors for Image Classification Type Journal Article
  Year 2015 Publication IEEE Transactions on Neural Networks and Learning Systems Abbreviated Journal (down) TNNLS  
  Volume 26 Issue 8 Pages 1761 - 1775  
  Keywords  
  Abstract Subspace-based methods have become popular due to their ability to appropriately represent complex data in such a way that both dimensionality is reduced and discriminativeness is enhanced. Several recent works have concentrated on the discriminative common vector (DCV) method and other closely related algorithms also based on the concept of null space. In this paper, we present a generalized incremental formulation of the DCV methods, which allows the update of a given model by considering the addition of new examples even from unseen classes. Having efficient incremental formulations of well-behaved batch algorithms allows us to conveniently adapt previously trained classifiers without the need of recomputing them from scratch. The proposed generalized incremental method has been empirically validated in different case studies from different application domains (faces, objects, and handwritten digits) considering several different scenarios in which new data are continuously added at different rates starting from an initial model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2162-237X ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ DFD2015 Serial 2547  
Permanent link to this record
 

 
Author Anjan Dutta; Hichem Sahbi edit   pdf
doi  openurl
  Title Stochastic Graphlet Embedding Type Journal Article
  Year 2018 Publication IEEE Transactions on Neural Networks and Learning Systems Abbreviated Journal (down) TNNLS  
  Volume Issue Pages 1-14  
  Keywords Stochastic graphlets; Graph embedding; Graph classification; Graph hashing; Betweenness centrality  
  Abstract Graph-based methods are known to be successful in many machine learning and pattern classification tasks. These methods consider semi-structured data as graphs where nodes correspond to primitives (parts, interest points, segments,
etc.) and edges characterize the relationships between these primitives. However, these non-vectorial graph data cannot be straightforwardly plugged into off-the-shelf machine learning algorithms without a preliminary step of – explicit/implicit –graph vectorization and embedding. This embedding process
should be resilient to intra-class graph variations while being highly discriminant. In this paper, we propose a novel high-order stochastic graphlet embedding (SGE) that maps graphs into vector spaces. Our main contribution includes a new stochastic search procedure that efficiently parses a given graph and extracts/samples unlimitedly high-order graphlets. We consider
these graphlets, with increasing orders, to model local primitives as well as their increasingly complex interactions. In order to build our graph representation, we measure the distribution of these graphlets into a given graph, using particular hash functions that efficiently assign sampled graphlets into isomorphic sets with a very low probability of collision. When
combined with maximum margin classifiers, these graphlet-based representations have positive impact on the performance of pattern comparison and recognition as corroborated through extensive experiments using standard benchmark databases.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 602.167; 602.168; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ DuS2018 Serial 3225  
Permanent link to this record
 

 
Author Lu Yu; Xialei Liu; Joost Van de Weijer edit   pdf
doi  openurl
  Title Self-Training for Class-Incremental Semantic Segmentation Type Journal Article
  Year 2022 Publication IEEE Transactions on Neural Networks and Learning Systems Abbreviated Journal (down) TNNLS  
  Volume Issue Pages  
  Keywords Class-incremental learning; Self-training; Semantic segmentation.  
  Abstract In class-incremental semantic segmentation, we have no access to the labeled data of previous tasks. Therefore, when incrementally learning new classes, deep neural networks suffer from catastrophic forgetting of previously learned knowledge. To address this problem, we propose to apply a self-training approach that leverages unlabeled data, which is used for rehearsal of previous knowledge. Specifically, we first learn a temporary model for the current task, and then, pseudo labels for the unlabeled data are computed by fusing information from the old model of the previous task and the current temporary model. In addition, conflict reduction is proposed to resolve the conflicts of pseudo labels generated from both the old and temporary models. We show that maximizing self-entropy can further improve results by smoothing the overconfident predictions. Interestingly, in the experiments, we show that the auxiliary data can be different from the training data and that even general-purpose, but diverse auxiliary data can lead to large performance gains. The experiments demonstrate the state-of-the-art results: obtaining a relative gain of up to 114% on Pascal-VOC 2012 and 8.5% on the more challenging ADE20K compared to previous state-of-the-art methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.147; 611.008; Approved no  
  Call Number Admin @ si @ YLW2022 Serial 3745  
Permanent link to this record
 

 
Author Koen E.A. van de Sande; Theo Gevers; Cees G.M. Snoek edit  doi
openurl 
  Title Empowering Visual Categorization with the GPU Type Journal Article
  Year 2011 Publication IEEE Transactions on Multimedia Abbreviated Journal (down) TMM  
  Volume 13 Issue 1 Pages 60-70  
  Keywords  
  Abstract Visual categorization is important to manage large collections of digital images and video, where textual meta-data is often incomplete or simply unavailable. The bag-of-words model has become the most powerful method for visual categorization of images and video. Despite its high accuracy, a severe drawback of this model is its high computational cost. As the trend to increase computational power in newer CPU and GPU architectures is to increase their level of parallelism, exploiting this parallelism becomes an important direction to handle the computational cost of the bag-of-words approach. When optimizing a system based on the bag-of-words approach, the goal is to minimize the time it takes to process batches of images. Additionally, we also consider power usage as an evaluation metric. In this paper, we analyze the bag-of-words model for visual categorization in terms of computational cost and identify two major bottlenecks: the quantization step and the classification step. We address these two bottlenecks by proposing two efficient algorithms for quantization and classification by exploiting the GPU hardware and the CUDA parallel programming model. The algorithms are designed to (1) keep categorization accuracy intact, (2) decompose the problem and (3) give the same numerical results. In the experiments on large scale datasets it is shown that, by using a parallel implementation on the Geforce GTX260 GPU, classifying unseen images is 4.8 times faster than a quad-core CPU version on the Core i7 920, while giving the exact same numerical results. In addition, we show how the algorithms can be generalized to other applications, such as text retrieval and video retrieval. Moreover, when the obtained speedup is used to process extra video frames in a video retrieval benchmark, the accuracy of visual categorization is improved by 29%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ SGS2011b Serial 1729  
Permanent link to this record
 

 
Author Ferran Diego; Joan Serrat; Antonio Lopez edit   pdf
doi  openurl
  Title Joint spatio-temporal alignment of sequences Type Journal Article
  Year 2013 Publication IEEE Transactions on Multimedia Abbreviated Journal (down) TMM  
  Volume 15 Issue 6 Pages 1377-1387  
  Keywords video alignment  
  Abstract Video alignment is important in different areas of computer vision such as wide baseline matching, action recognition, change detection, video copy detection and frame dropping prevention. Current video alignment methods usually deal with a relatively simple case of fixed or rigidly attached cameras or simultaneous acquisition. Therefore, in this paper we propose a joint video alignment for bringing two video sequences into a spatio-temporal alignment. Specifically, the novelty of the paper is to formulate the video alignment to fold the spatial and temporal alignment into a single alignment framework. This simultaneously satisfies a frame-correspondence and frame-alignment similarity; exploiting the knowledge among neighbor frames by a standard pairwise Markov random field (MRF). This new formulation is able to handle the alignment of sequences recorded at different times by independent moving cameras that follows a similar trajectory, and also generalizes the particular cases that of fixed geometric transformation and/or linear temporal mapping. We conduct experiments on different scenarios such as sequences recorded simultaneously or by moving cameras to validate the robustness of the proposed approach. The proposed method provides the highest video alignment accuracy compared to the state-of-the-art methods on sequences recorded from vehicles driving along the same track at different times.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-9210 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ DSL2013; ADAS @ adas @ Serial 2228  
Permanent link to this record
 

 
Author Weiqing Min; Shuqiang Jiang; Jitao Sang; Huayang Wang; Xinda Liu; Luis Herranz edit  doi
openurl 
  Title Being a Supercook: Joint Food Attributes and Multimodal Content Modeling for Recipe Retrieval and Exploration Type Journal Article
  Year 2017 Publication IEEE Transactions on Multimedia Abbreviated Journal (down) TMM  
  Volume 19 Issue 5 Pages 1100 - 1113  
  Keywords  
  Abstract This paper considers the problem of recipe-oriented image-ingredient correlation learning with multi-attributes for recipe retrieval and exploration. Existing methods mainly focus on food visual information for recognition while we model visual information, textual content (e.g., ingredients), and attributes (e.g., cuisine and course) together to solve extended recipe-oriented problems, such as multimodal cuisine classification and attribute-enhanced food image retrieval. As a solution, we propose a multimodal multitask deep belief network (M3TDBN) to learn joint image-ingredient representation regularized by different attributes. By grouping ingredients into visible ingredients (which are visible in the food image, e.g., “chicken” and “mushroom”) and nonvisible ingredients (e.g., “salt” and “oil”), M3TDBN is capable of learning both midlevel visual representation between images and visible ingredients and nonvisual representation. Furthermore, in order to utilize different attributes to improve the intermodality correlation, M3TDBN incorporates multitask learning to make different attributes collaborate each other. Based on the proposed M3TDBN, we exploit the derived deep features and the discovered correlations for three extended novel applications: 1) multimodal cuisine classification; 2) attribute-augmented cross-modal recipe image retrieval; and 3) ingredient and attribute inference from food images. The proposed approach is evaluated on the constructed Yummly dataset and the evaluation results have validated the effectiveness of the proposed approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ MJS2017 Serial 2964  
Permanent link to this record
 

 
Author Luis Herranz; Shuqiang Jiang; Ruihan Xu edit   pdf
doi  openurl
  Title Modeling Restaurant Context for Food Recognition Type Journal Article
  Year 2017 Publication IEEE Transactions on Multimedia Abbreviated Journal (down) TMM  
  Volume 19 Issue 2 Pages 430 - 440  
  Keywords  
  Abstract Food photos are widely used in food logs for diet monitoring and in social networks to share social and gastronomic experiences. A large number of these images are taken in restaurants. Dish recognition in general is very challenging, due to different cuisines, cooking styles, and the intrinsic difficulty of modeling food from its visual appearance. However, contextual knowledge can be crucial to improve recognition in such scenario. In particular, geocontext has been widely exploited for outdoor landmark recognition. Similarly, we exploit knowledge about menus and location of restaurants and test images. We first adapt a framework based on discarding unlikely categories located far from the test image. Then, we reformulate the problem using a probabilistic model connecting dishes, restaurants, and locations. We apply that model in three different tasks: dish recognition, restaurant recognition, and location refinement. Experiments on six datasets show that by integrating multiple evidences (visual, location, and external knowledge) our system can boost the performance in all tasks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ HJX2017 Serial 2965  
Permanent link to this record
 

 
Author Pau Rodriguez; Diego Velazquez; Guillem Cucurull; Josep M. Gonfaus; Xavier Roca; Jordi Gonzalez edit   pdf
doi  openurl
  Title Pay attention to the activations: a modular attention mechanism for fine-grained image recognition Type Journal Article
  Year 2020 Publication IEEE Transactions on Multimedia Abbreviated Journal (down) TMM  
  Volume 22 Issue 2 Pages 502-514  
  Keywords  
  Abstract Fine-grained image recognition is central to many multimedia tasks such as search, retrieval, and captioning. Unfortunately, these tasks are still challenging since the appearance of samples of the same class can be more different than those from different classes. This issue is mainly due to changes in deformation, pose, and the presence of clutter. In the literature, attention has been one of the most successful strategies to handle the aforementioned problems. Attention has been typically implemented in neural networks by selecting the most informative regions of the image that improve classification. In contrast, in this paper, attention is not applied at the image level but to the convolutional feature activations. In essence, with our approach, the neural model learns to attend to lower-level feature activations without requiring part annotations and uses those activations to update and rectify the output likelihood distribution. The proposed mechanism is modular, architecture-independent, and efficient in terms of both parameters and computation required. Experiments demonstrate that well-known networks such as wide residual networks and ResNeXt, when augmented with our approach, systematically improve their classification accuracy and become more robust to changes in deformation and pose and to the presence of clutter. As a result, our proposal reaches state-of-the-art classification accuracies in CIFAR-10, the Adience gender recognition task, Stanford Dogs, and UEC-Food100 while obtaining competitive performance in ImageNet, CIFAR-100, CUB200 Birds, and Stanford Cars. In addition, we analyze the different components of our model, showing that the proposed attention modules succeed in finding the most discriminative regions of the image. Finally, as a proof of concept, we demonstrate that with only local predictions, an augmented neural network can successfully classify an image before reaching any fully connected layer, thus reducing the computational amount up to 10%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 600.119; 600.098 Approved no  
  Call Number Admin @ si @ RVC2020a Serial 3417  
Permanent link to this record
 

 
Author Diego Velazquez; Pau Rodriguez; Alexandre Lacoste; Issam H. Laradji; Xavier Roca; Jordi Gonzalez edit  url
openurl 
  Title Evaluating Counterfactual Explainers Type Journal
  Year 2023 Publication Transactions on Machine Learning Research Abbreviated Journal (down) TMLR  
  Volume Issue Pages  
  Keywords Explainability; Counterfactuals; XAI  
  Abstract Explainability methods have been widely used to provide insight into the decisions made by statistical models, thus facilitating their adoption in various domains within the industry. Counterfactual explanation methods aim to improve our understanding of a model by perturbing samples in a way that would alter its response in an unexpected manner. This information is helpful for users and for machine learning practitioners to understand and improve their models. Given the value provided by counterfactual explanations, there is a growing interest in the research community to investigate and propose new methods. However, we identify two issues that could hinder the progress in this field. (1) Existing metrics do not accurately reflect the value of an explainability method for the users. (2) Comparisons between methods are usually performed with datasets like CelebA, where images are annotated with attributes that do not fully describe them and with subjective attributes such as ``Attractive''. In this work, we address these problems by proposing an evaluation method with a principled metric to evaluate and compare different counterfactual explanation methods. The evaluation method is based on a synthetic dataset where images are fully described by their annotated attributes. As a result, we are able to perform a fair comparison of multiple explainability methods in the recent literature, obtaining insights about their performance. We make the code public for the benefit of the research community.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ VRL2023 Serial 3891  
Permanent link to this record
 

 
Author Amir A.Amini; Yasheng Chen; Mohamed Elayyadi; Petia Radeva edit   pdf
openurl 
  Title Tag Surface Reconstruction and Tracking of Myocardial Beads from SPAMM-MRI with Parametric B-Spline Surfaces Type Journal
  Year 2001 Publication IEEE Transactions on Medical Imaging Abbreviated Journal (down) TMI  
  Volume 20 Issue 2 Pages 94–103  
  Keywords B-spline surfaces, cardiac motion, myocardial beads, myocardial infarction, tagged MRI.  
  Abstract Magnetic resonance imaging (MRI) is unique in its ability to noninvasively and selectively alter tissue magnetization, and create tag planes intersecting image slices. The resulting grid of signal voids allows for tracking deformations of tissues in otherwise homogeneous-signal myocardial regions. In this paper, we propose a specific spatial modulation of magnetization (SPAMM) imaging protocol together with efficient techniques for measurement of three-dimensional (3-D) motion of material points of the human heart (referred to as myocardial beads) from images collected with the SPAMM method. The techniques make use of tagged images in orthogonal views by explicitly reconstructing 3-D B-spline surface representation of tag planes (tag planes in two orthogonal orientations intersecting the short-axis (SA) image slices and tag planes in an orientation orthogonal to the short-axis tag planes intersecting long-axis (LA) image slices). The developed methods allow for viewing deformations of 3-D tag surfaces, spatial correspondence of long-axis and short-axis image slice and tag positions, as well as nonrigid movement of myocardial beads as a function of time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number BCNPCL @ bcnpcl @ ACE2001; IAM @ iam @ ACE2001 Serial 180  
Permanent link to this record
 

 
Author Fernando Vilariño; Panagiota Spyridonos; Fosca De Iorio; Jordi Vitria; Fernando Azpiroz; Petia Radeva edit   pdf
doi  openurl
  Title Intestinal Motility Assessment With Video Capsule Endoscopy: Automatic Annotation of Phasic Intestinal Contractions Type Journal Article
  Year 2010 Publication IEEE Transactions on Medical Imaging Abbreviated Journal (down) TMI  
  Volume 29 Issue 2 Pages 246-259  
  Keywords  
  Abstract Intestinal motility assessment with video capsule endoscopy arises as a novel and challenging clinical fieldwork. This technique is based on the analysis of the patterns of intestinal contractions shown in a video provided by an ingestible capsule with a wireless micro-camera. The manual labeling of all the motility events requires large amount of time for offline screening in search of findings with low prevalence, which turns this procedure currently unpractical. In this paper, we propose a machine learning system to automatically detect the phasic intestinal contractions in video capsule endoscopy, driving a useful but not feasible clinical routine into a feasible clinical procedure. Our proposal is based on a sequential design which involves the analysis of textural, color, and blob features together with SVM classifiers. Our approach tackles the reduction of the imbalance rate of data and allows the inclusion of domain knowledge as new stages in the cascade. We present a detailed analysis, both in a quantitative and a qualitative way, by providing several measures of performance and the assessment study of interobserver variability. Our system performs at 70% of sensitivity for individual detection, whilst obtaining equivalent patterns to those of the experts for density of contractions.  
  Address  
  Corporate Author IEEE Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0278-0062 ISBN Medium  
  Area 800 Expedition Conference  
  Notes MILAB;MV;OR;SIAI Approved no  
  Call Number BCNPCL @ bcnpcl @ VSD2010; IAM @ iam @ VSI2010 Serial 1281  
Permanent link to this record
 

 
Author Jaume Garcia; Debora Gil; Luis Badiella; Aura Hernandez-Sabate; Francesc Carreras; Sandra Pujades; Enric Marti edit   pdf
doi  openurl
  Title A Normalized Framework for the Design of Feature Spaces Assessing the Left Ventricular Function Type Journal Article
  Year 2010 Publication IEEE Transactions on Medical Imaging Abbreviated Journal (down) TMI  
  Volume 29 Issue 3 Pages 733-745  
  Keywords  
  Abstract A through description of the left ventricle functionality requires combining complementary regional scores. A main limitation is the lack of multiparametric normality models oriented to the assessment of regional wall motion abnormalities (RWMA). This paper covers two main topics involved in RWMA assessment. We propose a general framework allowing the fusion and comparison across subjects of different regional scores. Our framework is used to explore which combination of regional scores (including 2-D motion and strains) is better suited for RWMA detection. Our statistical analysis indicates that for a proper (within interobserver variability) identification of RWMA, models should consider motion and extreme strains.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0278-0062 ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GGH2010b Serial 1507  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil;Eduard Fernandez-Nofrerias;Petia Radeva; Enric Marti edit   pdf
doi  openurl
  Title Approaching Artery Rigid Dynamics in IVUS Type Journal Article
  Year 2009 Publication IEEE Transactions on Medical Imaging Abbreviated Journal (down) TMI  
  Volume 28 Issue 11 Pages 1670-1680  
  Keywords Fourier analysis; intravascular ultrasound (IVUS) dynamics; longitudinal motion; quality measures; tissue deformation.  
  Abstract Tissue biomechanical properties (like strain and stress) are playing an increasing role in diagnosis and long-term treatment of intravascular coronary diseases. Their assessment strongly relies on estimation of vessel wall deformation. Since intravascular ultrasound (IVUS) sequences allow visualizing vessel morphology and reflect its dynamics, this technique represents a useful tool for evaluation of tissue mechanical properties. Image misalignment introduced by vessel-catheter motion is a major artifact for a proper tracking of tissue deformation. In this work, we focus on compensating and assessing IVUS rigid in-plane motion due to heart beating. Motion parameters are computed by considering both the vessel geometry and its appearance in the image. Continuum mechanics laws serve to introduce a novel score measuring motion reduction in in vivo sequences. Synthetic experiments validate the proposed score as measure of motion parameters accuracy; whereas results in in vivo pullbacks show the reliability of the presented methodologies in clinical cases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0278-0062 ISBN Medium  
  Area Expedition Conference  
  Notes IAM; MILAB Approved no  
  Call Number IAM @ iam @ HGF2009 Serial 1545  
Permanent link to this record
 

 
Author Jorge Bernal; Nima Tajkbaksh; F. Javier Sanchez; Bogdan J. Matuszewski; Hao Chen; Lequan Yu; Quentin Angermann; Olivier Romain; Bjorn Rustad; Ilangko Balasingham; Konstantin Pogorelov; Sungbin Choi; Quentin Debard; Lena Maier Hein; Stefanie Speidel; Danail Stoyanov; Patrick Brandao; Henry Cordova; Cristina Sanchez Montes; Suryakanth R. Gurudu; Gloria Fernandez Esparrach; Xavier Dray; Jianming Liang; Aymeric Histace edit   pdf
doi  openurl
  Title Comparative Validation of Polyp Detection Methods in Video Colonoscopy: Results from the MICCAI 2015 Endoscopic Vision Challenge Type Journal Article
  Year 2017 Publication IEEE Transactions on Medical Imaging Abbreviated Journal (down) TMI  
  Volume 36 Issue 6 Pages 1231 - 1249  
  Keywords Endoscopic vision; Polyp Detection; Handcrafted features; Machine Learning; Validation Framework  
  Abstract Colonoscopy is the gold standard for colon cancer screening though still some polyps are missed, thus preventing early disease detection and treatment. Several computational systems have been proposed to assist polyp detection during colonoscopy but so far without consistent evaluation. The lack
of publicly available annotated databases has made it difficult to compare methods and to assess if they achieve performance levels acceptable for clinical use. The Automatic Polyp Detection subchallenge, conducted as part of the Endoscopic Vision Challenge (http://endovis.grand-challenge.org) at the international conference on Medical Image Computing and Computer Assisted
Intervention (MICCAI) in 2015, was an effort to address this need. In this paper, we report the results of this comparative evaluation of polyp detection methods, as well as describe additional experiments to further explore differences between methods. We define performance metrics and provide evaluation databases that allow comparison of multiple methodologies. Results show that convolutional neural networks (CNNs) are the state of the art. Nevertheless it is also demonstrated that combining different methodologies can lead to an improved overall performance.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MV; 600.096; 600.075 Approved no  
  Call Number Admin @ si @ BTS2017 Serial 2949  
Permanent link to this record
 

 
Author Victor M. Campello; Polyxeni Gkontra; Cristian Izquierdo; Carlos Martin-Isla; Alireza Sojoudi; Peter M. Full; Klaus Maier-Hein; Yao Zhang; Zhiqiang He; Jun Ma; Mario Parreno; Alberto Albiol; Fanwei Kong; Shawn C. Shadden; Jorge Corral Acero; Vaanathi Sundaresan; Mina Saber; Mustafa Elattar; Hongwei Li; Bjoern Menze; Firas Khader; Christoph Haarburger; Cian M. Scannell; Mitko Veta; Adam Carscadden; Kumaradevan Punithakumar; Xiao Liu; Sotirios A. Tsaftaris; Xiaoqiong Huang; Xin Yang; Lei Li; Xiahai Zhuang; David Vilades; Martin L. Descalzo; Andrea Guala; Lucia La Mura; Matthias G. Friedrich; Ria Garg; Julie Lebel; Filipe Henriques; Mahir Karakas; Ersin Cavus; Steffen E. Petersen; Sergio Escalera; Santiago Segui; Jose F. Rodriguez Palomares; Karim Lekadir edit  url
doi  openurl
  Title Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation: The M&Ms Challenge Type Journal Article
  Year 2021 Publication IEEE Transactions on Medical Imaging Abbreviated Journal (down) TMI  
  Volume 40 Issue 12 Pages 3543-3554  
  Keywords  
  Abstract The emergence of deep learning has considerably advanced the state-of-the-art in cardiac magnetic resonance (CMR) segmentation. Many techniques have been proposed over the last few years, bringing the accuracy of automated segmentation close to human performance. However, these models have been all too often trained and validated using cardiac imaging samples from single clinical centres or homogeneous imaging protocols. This has prevented the development and validation of models that are generalizable across different clinical centres, imaging conditions or scanner vendors. To promote further research and scientific benchmarking in the field of generalizable deep learning for cardiac segmentation, this paper presents the results of the Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation (M&Ms) Challenge, which was recently organized as part of the MICCAI 2020 Conference. A total of 14 teams submitted different solutions to the problem, combining various baseline models, data augmentation strategies, and domain adaptation techniques. The obtained results indicate the importance of intensity-driven data augmentation, as well as the need for further research to improve generalizability towards unseen scanner vendors or new imaging protocols. Furthermore, we present a new resource of 375 heterogeneous CMR datasets acquired by using four different scanner vendors in six hospitals and three different countries (Spain, Canada and Germany), which we provide as open-access for the community to enable future research in the field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ CGI2021 Serial 3653  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: