toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Victor M. Campello; Polyxeni Gkontra; Cristian Izquierdo; Carlos Martin-Isla; Alireza Sojoudi; Peter M. Full; Klaus Maier-Hein; Yao Zhang; Zhiqiang He; Jun Ma; Mario Parreno; Alberto Albiol; Fanwei Kong; Shawn C. Shadden; Jorge Corral Acero; Vaanathi Sundaresan; Mina Saber; Mustafa Elattar; Hongwei Li; Bjoern Menze; Firas Khader; Christoph Haarburger; Cian M. Scannell; Mitko Veta; Adam Carscadden; Kumaradevan Punithakumar; Xiao Liu; Sotirios A. Tsaftaris; Xiaoqiong Huang; Xin Yang; Lei Li; Xiahai Zhuang; David Vilades; Martin L. Descalzo; Andrea Guala; Lucia La Mura; Matthias G. Friedrich; Ria Garg; Julie Lebel; Filipe Henriques; Mahir Karakas; Ersin Cavus; Steffen E. Petersen; Sergio Escalera; Santiago Segui; Jose F. Rodriguez Palomares; Karim Lekadir edit  url
doi  openurl
  Title Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation: The M&Ms Challenge Type Journal Article
  Year 2021 Publication IEEE Transactions on Medical Imaging Abbreviated Journal TMI  
  Volume 40 Issue 12 Pages 3543-3554  
  Keywords  
  Abstract The emergence of deep learning has considerably advanced the state-of-the-art in cardiac magnetic resonance (CMR) segmentation. Many techniques have been proposed over the last few years, bringing the accuracy of automated segmentation close to human performance. However, these models have been all too often trained and validated using cardiac imaging samples from single clinical centres or homogeneous imaging protocols. This has prevented the development and validation of models that are generalizable across different clinical centres, imaging conditions or scanner vendors. To promote further research and scientific benchmarking in the field of generalizable deep learning for cardiac segmentation, this paper presents the results of the Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation (M&Ms) Challenge, which was recently organized as part of the MICCAI 2020 Conference. A total of 14 teams submitted different solutions to the problem, combining various baseline models, data augmentation strategies, and domain adaptation techniques. The obtained results indicate the importance of intensity-driven data augmentation, as well as the need for further research to improve generalizability towards unseen scanner vendors or new imaging protocols. Furthermore, we present a new resource of 375 heterogeneous CMR datasets acquired by using four different scanner vendors in six hospitals and three different countries (Spain, Canada and Germany), which we provide as open-access for the community to enable future research in the field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj;MILAB Approved no  
  Call Number Admin @ si @ CGI2021 Serial 3653  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: