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Intestinal Motility Assessment With Video Capsule
Endoscopy: Automatic Annotation of Phasic

Intestinal Contractions
Fernando Vilariño*, Panagiota Spyridonos, Fosca DeIorio, Jordi Vitrià, Fernando Azpiroz, and Petia Radeva

Abstract—Intestinal motility assessment with video capsule en-
doscopy arises as a novel and challenging clinical fieldwork. This
technique is based on the analysis of the patterns of intestinal con-
tractions shown in a video provided by an ingestible capsule with
a wireless micro-camera. The manual labeling of all the motility
events requires large amount of time for offline screening in search
of findings with low prevalence, which turns this procedure cur-
rently unpractical. In this paper, we propose a machine learning
system to automatically detect the phasic intestinal contractions in
video capsule endoscopy, driving a useful but not feasible clinical
routine into a feasible clinical procedure. Our proposal is based on
a sequential design which involves the analysis of textural, color,
and blob features together with SVM classifiers. Our approach
tackles the reduction of the imbalance rate of data and allows the
inclusion of domain knowledge as new stages in the cascade. We
present a detailed analysis, both in a quantitative and a qualitative
way, by providing several measures of performance and the assess-
ment study of interobserver variability. Our system performs at
70% of sensitivity for individual detection, whilst obtaining equiv-
alent patterns to those of the experts for density of contractions.

Index Terms—Imbalanced data classification, intestinal motility,
video capsule endoscopy.

I. INTRODUCTION

S MALL intestine motility dysfunctions are shown to be re-
lated to certain gastrointestinal pathologies which can be

manifest in a varied symptomatology [1]. Ileus, bacterial over-
growth, and the irritable bowel syndrome have been reported as
major clinical disorders. The analysis of the intestinal contrac-
tions of the small bowel, in terms of number, frequency, and dis-
tribution along the intestinal tract, represents one of the methods
with the highest clinical significance [2], [3]. Current techniques
for assessment of small intestinal motility are multiple and com-
plementary [2], [4], but small intestinal manometry is widely
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accepted as the most reliable so far. Manometry is an invasive
and discomforting test based on the measure of the pressure in
certain points of the gut, lacking of sensitivity over certain types
of weak intestinal contractions.

In this paper, we address the study of intestinal contractions
in a novel approach using wireless capsule video endoscopy
(WCVE) as data source. WCVE consists of a capsule with a
camera, a battery, and a set of led lamps for illumination at-
tached to it, which is swallowed by the patient, emitting a radio-
frequency signal which is received and stored in an external
device. The result is a video movie which records the trip of
the capsule along the intestinal tract with a rate of two frames
per second, and that can be easily downloaded into a PC with
the camera software installed. This technique overcomes most
of the drawbacks related to manometry: it is much less inva-
sive, since the patient simply has to swallow the pill, which will
be expelled in the normal cycle through defecation. Moreover,
there is no need of hospitalization nor expert support through
the process and the patient can lead an ordinary life, since the
attached device is recording the video movie emitted by the
camera in the capsule. Once the video is downloaded into the
workstation, the expert visualizes the zone of interest and labels
those frames where an intestinal event is detected, obtaining the
temporal pattern of intestinal contractions which is to be used as
a base for the intestinal motility dysfunction assessment. How-
ever, the visualization and precise interpretation of the capsule
recordings is not straightforward, but it is time consuming and
stressful, since the prevalence of contractions in video is very
low (1:50 frames). Visualization time can vary depending on
the frame rate used for this purpose, but generally speaking, it
is common that for a visualization study of the whole small in-
testine the expert takes about 2 h, making it not feasible as a
clinical routine.

In order to deal with these drawbacks, and make the analysis
of the information provided by the capsule feasible for clinical
routines, we focus our efforts on the design of a system for the
automatic annotation of intestinal contractions in capsule video
endoscopy. We provide the physicians with one of the funda-
mental measurements they need for the assessment of intestinal
motility, namely, the position of the intestinal contractions in
capsule endoscopy videos in an automatic way. This informa-
tion allows the specialists to tackle the analysis of diverse pa-
rameters related to these findings, such as their number, their
typology, their distribution and frequency, etc. This informa-
tion is to be contextualized within a new and general framework
for motility assessment, in which other parameters, such as the
study of transit time, the analysis of quiet periods, the examina-
tion of intestinal content, etc., should play their important role,
as recent research studies propose [5], [6]. The extent to what
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all these issues could be potentially utilized as a basis for fur-
ther pathological diagnosis, within a wider clinical framework,
constitutes a novel and open field of clinical investigation. Con-
sequently, for this research scenario to be successfully tackled,
the position of the intestinal contractions in video appears as
an essential pillar, although the current procedures used for this
aim, based on manual labeling, have made its deployment un-
feasible so far.

Several works have been reported in the fieldwork of classical
endoscopy, addressing the support of automatic systems for the
diagnosis of different pathologies, such as ulcer or cancer, with
applications based on digital image analysis and processing. The
state-of-the art in this area includes the use of numerical de-
scriptors obtained from histogram analysis [7], co-occurrence
matrices [8], homogeneity and hue of color images and binary
pattern/intensity models for texture segmentation [9], texture
spectrum analysis [10], [11], and wavelet features [12] among
others. From all these works one can conclude that intensity,
color and texture are relevant visual cues when processing en-
doscopic videos. In addition, all of these approaches consist of
frame-based analyses which fit the nature of the applications for
which they are designed.

In our opinion, one of the fundamental novelties of our con-
tribution is to propose an integrated system that implements a
sequence-based approach instead of a frame-based approach to
analyze dynamic events such as intestinal contractions within
an adequate framework, extract heterogeneous visual features
and classify them in a robust way. Our proposal is based on a
machine learning system which automatically learns and clas-
sifies contractions from a capsule video source, providing the
expert with the portion of the video which is highly likely to
contain the intestinal contractions. This yields a considerable
reduction in visualization time, and the consequent reduction
of stress, since most of the sequences to be analyzed are real
contractions. One of the main advantages of our system is re-
lated to its ability to dynamically adapt itself to the different
patterns of intestinal activity associated with intestinal contrac-
tions in a robust way. Furthermore, our implementation appears
to be flexible and easily extensible, since the modular design
of our approach will potentially allow the expert to include do-
main knowledge into the system by means of the addition of
new modular stages.

The rest of the paper is organized as follows. In Section II,
we develop the analysis and explanation of WCVE images, the
different visual appearance of the different types of intestinal
contractions and the difficulties inherent to their detection. In
Section III, we describe the feature extraction and the classifica-
tion procedure. Section IV presents our experimental results. Fi-
nally, we devote the last sections to the discussion of our system,
and the exposition of our proposals for future research on in-
testinal motility with video capsule endoscopy.

II. INTESTINAL CONTRACTIONS IN VIDEO

CAPSULE ENDOSCOPY

A. Basic Concepts on Gastrointestinal Motility

Muscle layers of the gut wall and their innervation are orga-
nized to provide the motor functions along the intestinal tract
[1].

As a result of muscular stimulation, a contractile activity and
tone are produced, and intestinal contractions are generated.

From a physiological point of view, the different patterns of
contractions can be gathered into two main categories, namely,
phasic and tonic. The former are characterized by a sudden
closing of the intestinal lumen, followed by a posterior opening,
while the latter corresponds to a sequence in which the intestinal
lumen remains completely closed for an undetermined span in
time.

Both the type and the spatial frequency of intestinal contrac-
tions depend on the region of the gastrointestinal tract (stomach,
small intestine, or colon), and the temporal patterns they present
are different during fasting (before the ingestion of nutrients)
and postprandial stages (after the ingestion of nutrients). A typ-
ical number around 400–900 phasic contractions can be found
in a 4-h-long study, distributed in periods of different activity.
The number and length of tonic contractions within the same
period can present a high variability, ranging from a set of few
long contractions to several tens of shorter ones. In this work,
we restricted our field of research to the study of small intestinal
motility assessment by means of the analysis of phasic contrac-
tions, in an attempt to provide a first approach to the global
problem.

B. Intestinal Contractions Sequences With Capsule Endoscopy

Video capsule endoscopy images show a circular field of
view, in which the intestinal wall and the intestinal lumen
are shown. The phasic contraction is observed as a closing
movement of the lumen which is spanned over a few frames.
Fig. 1 shows a mosaic where the frames of a video have been
deployed in a sequential way and different intestinal contrac-
tions have been outlined in a green rectangle. The maximal
frequency of phasic contractions is known to be between 11
and 12 events per minute, spanning 4–5 s in average for the
whole open-close-open cycle [1], [2], and the frame acquisition
rate of cameras is typically set on 2 frames per second [13].
Thus, we adopted the convention of bounding the span of a
phasic contraction in a sequence of nine frames. In the rest of
the paper, we refer to a contraction sequence as a nine frames
sequence, where the central frame is set to be the frame that
will be labeled as a detected contraction. The intensity with
which the intestinal walls concentrically contract is not the
same for all the contractions, and sometimes the closing of
the lumen is not complete. If the lumen is fully closed during
a contractile activity, this kind of event is referred to as an
occlusive contraction; in case the lumen closing is not total,
the intestinal contraction is referred to as nonocclusive. Nonoc-
clusive contractions are hard to detect by classical manometry,
since the intestinal walls do not exert sufficient pressure to be
detected. In video capsule endoscopy this kind of contractions
is clearly shown, though. Fig. 1 renders out two clear examples
of occlusive and nonocclusive contractions labeled as (a) and
(b), respectively.

If the camera is focusing the lumen during the whole con-
traction, as pictured in Fig. 2(a), the contraction pattern appears
clearly. However, these visual patterns present a high variability,
which is strictly related to 1) the movement of the device along
the gut and 2) the presence of intestinal content

1) Camera Movement: Since the capsule is freely moving
into the gut, multiple changes in direction (namely, focusing
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Fig. 1. An example of 140 consecutive frames, corresponding with 70 s, from a small intestine capsule endoscopy video study. The image shows a paradigmatic
visual example of the dynamics involved in intestinal motility. The green rectangles surround different contraction frames labeled by the experts. In the occlusive
and nonocclusive contractions labeled as (a) and (b), respectively, the camera focused the lumen during the whole contraction. In (c)–(h), the lumen was partially
or totally missed in different parts of the sequence due to the free movement of the camera within the gut.

Fig. 2. Graphical representation in three steps (before, at the time of, and
after the contraction event). (a) The paradigm of a complete phasic contraction.
(b) The camera pointing towards the intestinal wall. (c) The presence of turbid
liquid hindering the visualization.

the intestinal lumen or the lateral intestinal wall) and orienta-
tion (i.e., facing the proximal or distal parts of the tract) are per-
formed. As a result, the camera is not always focusing the cen-
tral part of the lumen, see Fig. 2(b) for a graphical representa-
tion. This yields incomplete contractions when the central frame
shows the intestinal lumen but it is not centered in the image, lat-
eral contractions when the first or the last part of the sequence is
missed, but the central frame is present, and out-of-plane con-
tractions when the central frame of the contraction is completely
out of plane and the contraction event can only be deduced by
the remaining part of the sequence, Fig. 1 shows different ex-
amples of these sequences, marked as (c)–(h).

2) Turbid Liquid: The good visibility of the intestinal lumen
and wall is usually hindered by the presence of intestinal juices
mixed up with remains of food, see Fig. 2(c). This is visualized
as a semi-opaque turbid liquid in a wide range of colors from
brown to yellow. In addition to this, the turbid liquid may be ac-
companied by the presence of bubbles and other artifacts related
to the flux of the different liquids into the gut. As a result, the
fluid is interposed between the camera and the intestinal con-
traction event, obstructing its right visualization. Fig. 3 shows
two example sequences containing turbid liquid.

Fig. 3. Two sequences of intestinal contractions with presence of turbid liquid,
which hinders partially (top) and completely (bottom) the correct visualization
of the event.

III. CASCADE SYSTEM FOR THE DETECTION OF INTESTINAL

CONTRACTIONS IN CAPSULE ENDOSCOPY

Our proposal for the automatic detection of phasic contrac-
tions in capsule endoscopy video is deployed in a sequentially
modular way, namely, a cascade, which is graphically explained
in Fig. 4. Each part of the cascade receives as an input the output
of the previous stage. The main input consists of the video
frames, and the main output consists of the frames suggested as
contractions. The rejected frames are distributed among three
different stages. A first stage detecting dynamic patterns related
to intestinal contractions, where most of the noncontraction
frames are filtered. A second stage, removing nonvalid frames
due to occlusions or a wrong orientation of the camera, as
described in Section II-B. A final classification stage based on
a support vector machine classifier (SVM) [14], where the final
output defines the suggested contractions. The learning steps
of each stage of the cascade involve a set of parameters for
tuning the classification performance. The turbid frames step
and the final classification step consist of two SVMs trained
with a data set which has been labeled from previous studies.
Grey level images were used throughout, unless otherwise
stated, by eliminating the hue and saturation information while
retaining the luminance [15].

A. Stage 1: Detecting Dynamic Patterns

The aim of the first stage is to prefilter all the video frames
according to the visual pattern of phasic contractions described
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Fig. 4. Cascade system for intestinal motility assessment. The input is the video study and the output are the intestinal contraction frames suggested by the system.
Each stage rejects sequences of noncontractions. The global performance can be tuned by the set of parameters .

Fig. 5. Pattern of (solid blue line) for (a) one contraction and (b) a random sequence. The dashed red line corresponds to the averaged pattern of all the labeled
intestinal contractions and the box plots define their lower quartile, median, and upper quartile (the whiskers show the extent of the rest of the data).

in Section II-B. This is implemented by means of the normalized
intensity , defined in

(1)

For each frame , we take into account the four previous and
the four following frames. For each one of these nine frames,
we calculate the overall intensity, , as the
sum of the intensity values of its pixels. The final value of
represents a normalized intensity of the central frame within the
nine frames sequence. Should the central frame be darker than
its neighbors, the difference in would tend to be nega-
tive, and vice-versa. For the specific visual pattern of phasic
contractions, the presence of an open lumen in the previous
and following frames makes the central frame of a sequence of
an intestinal contraction have a higher value of intensity than
its neighbors. Thus, is designed in order to present a
symmetric concave pattern when the central frame of a nine
frames sequence corresponds with an intestinal contraction, and
a smooth pattern with a different shape otherwise. A plot of

for (a) one contraction sequence and (b) one arbitrary
sequence of nine frames is pictured in Fig. 5. A discriminant
function is defined in terms of and the threshold as

(2)

rejecting all the frames for which .

B. Stage 2: Rejection of Turbid, Wall and Tunnel Frames

The aim of stage two is to reject the turbid frames and those
frames where the camera is focusing on the intestinal wall. In
addition to this, those frames where the lumen appears static for

a long sequence of time are rejected as well, since these frames
do not carry motility information.

1) Turbid Frames: The presence of turbid liquid is character-
ized by color, which is usually in a range from brown to yellow,
mainly centered around green. For each frame, a color quanti-
zation is performed in the following way: each RGB component
of the image is quantized into five bins in a linear way, spanning
all the range of the color component. This yields a 125-bin his-
togram , which is used as a feature vector. In order to train
the turbid classifier, a data set of 2000 turbid frames from seven
specific studies was randomly chosen among those video re-
gions that the experts labeled as “region showing intestinal con-
tent.” The nonturbid frames were randomly chosen among the
remaining sequences using undersampling, i.e., taking a random
sample of nonturbid equal to the number of turbid. The seven se-
lected studies represented paradigmatic examples of intestinal
content appearance regarding the experts’ opinion.

The SVM has two main generalized parameters to be set: the
kernel type and the kernel parameter. We used a radial basis
function kernel and a . Equation (3) shows the mathe-
matical representation of the radial basis function kernel

(3)

The choice of the kernel and the parameter was obtained
in an empirical way with an exhaustive analysis, using as a ref-
erence for validation the visual assessment of the experts. The
SVM classifies all the video frames into turbid and nonturbid.
In order to incorporate the dynamic characteristics of the in-
testinal contractions as performed in the first stage, we adopted
as a final criterion the rejection of those frames with more than
four neighbors labeled as turbid frames within the nine frames
sequence (the number of four frames was strictly based on the
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Fig. 6. Paradigmatic sequences of wall (top), and tunnel frames (bottom). This
type of sequences lack information regarding contractions, and the system de-
tects and rejects them as system negatives in the second stage.

experts’ assessment), letting the remaining frames pass to the
next step. By automatizing the intestinal contents detection in
this way, the specific intervention of the expert, which was sug-
gested as a plausible alternative in previous contributions [16],
can be avoided.

2) Wall and Tunnel Frames: Wall and tunnel frames are those
due to the stable orientation of the camera towards the intestinal
wall and lumen respectively, for a span of time where no motility
activity is present. Fig. 6 shows two examples of wall (top)
and tunnel sequences (bottom). Both wall and tunnel frames
were described by means of the sum of the area of the lumen
throughout the sequence of nine frames.

In order to estimate the area of the lumen in each frame, a
Laplacian of Gaussian filter (LoG) was applied [15]. The LoG
filter is a second order symmetric filter with a tuning parameter

which plays the role of a scale parameter. The output of the
LoG is high when a dark spot is found, providing a higher re-
sponse the closer the diameter of the spot is fitting the span of
the Gaussian defined by , and the higher the contrast is be-
tween the dark spot and its bounds. The value of was fixed to

, the minimum size of the lumen in the central frame
of a contraction sequence (this was straightforward to obtain
after testing different values of several contraction sequences
a quarter of the original size). The whole procedure is graph-
ically deployed in Fig. 7 (this figure is shown as appearing in
[17]). For each sequence of nine frames, the LoG filter is ap-
plied (second row). Following, a greater-than-zero threshold is
performed to the filter output, which provides a binary image
with one or more connected components or blobs (third row).
In case that only one blob is obtained, its area is taken as
the lumen area from

(4)

In case that several blobs are obtained, the one with the highest
global response of the filter (i.e., presumed to be the one with
the highest contrast and best fitting in size) is selected based on
the function

(5)

where represents the element-by-element product of the two
image matrices. The last row in Fig. 7 shows an example of the

Fig. 7. Original image, LoG filter response, binary blob and final lumen seg-
mentation for the nine frames of an intestinal contraction sequence.

lumen segmentations obtained with this procedure. The subse-
quent characterization of wall and tunnel frames is straightfor-
ward: the system classifies a frame as a wall frame if the sum
of the lumen area throughout the nine frames sequence is less
than a certain threshold, while the same frame is classified as a
tunnel frame if the sum of the lumen area throughout the nine
frames sequence is greater than certain threshold. These two
values form the system tuning parameters and .

C. Stage 3: Final Classifier

The last stage of our approach consists of a SVM classifier,
which receives as an input the output of the second stage of the
cascade, with an imbalance ratio which has been typically re-
duced from 1:50 to 1:5 frames. The output of the SVM con-
sists of frames suggested to the specialist as the candidates for
intestinal contractions. The choice of the SVM is underpinned
by its robust mathematical background, being one of the most
widely used classification techniques, with a remarkable success
in multiple and diverse applications through the recent years
[18]. A radial basis function kernel was used with a .
The parameter controls the operation point of the SVM, and
corresponds to the fourth tuning parameter of the system, .

In order to characterize the intestinal contractions, a set of 33
features were computed. These features included the following.

1) The three previously described functions , and .
2) ix textural features obtained from the co-occurrence matrix

[19] of the original gray-level image after gray level nor-
malization: energy, entropy, inverse differential moment,
shade, inertia, and promenance [7], [20].

3) Eighteen features obtained from the histogram of the
Rotation Invariant Uniform Local Binary Units operator
(LBPriu2), applied in a circular symmetric neighborhood
using different orientations and a radius
[21]. The results reported in the bibliography for textured
patterns point out these values as a fine compromise
between the number of features obtained (18) and the
performance in textural discrimination.

4) Finally, six statistical features: standard deviation, skew-
ness, and kurtosis were calculated on the normalized gray
level image and the local binary pattern vector. The use of
these textural features, in addition to the normalized inten-
sity, blob area and blob contrast, is underpinned by the fact
that during the contraction, the folds and wrinkles of the
intestinal wall tend to show certain patterns which endow
these images with a typical texture carrying discriminative
power from a visual point of view. In this sense, textural
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information can also be useful for the explicit characteri-
zation of certain types of turbid liquid, such as the bubbles
shown in Fig. 3, which might be tackled by means of tex-
ture analysis using Gabor filters [22]

A feature vector was constructed taking into account the pre-
vious and following four frames, so that a final
dimensional feature vector was assigned to each frame. In order
to address the high dimensionality of this feature space, a se-
quential forward feature selection method was applied [23].

IV. RESULTS

Our experimental tests were performed using 10 capsule
studies obtained from 10 different volunteers. These volun-
teers were aged between 22 and 33, presented no evidence of
gastrointestinal pathologies and were asked to abstain from
eating and drinking for 12 h prior to the start of the studies,
which were conducted at the Digestive Diseases Department
of the General Hospital de la Vall D’Hebron in Barcelona,
Spain. The endoscopic capsules used were developed by Given
Imaging, Ltd. The capsules dimensions were 11 26 mm,
contained six light emitting diodes, a lens, a color camera chip,
two batteries with a mean life of about 6 h, a radio-frequency
transmitter, and an antenna. The capsule acquisition rate was
two frames per second with a resolution of 256 256 24-bit.
For each study, one expert visualized the whole video and
labeled all the frames showing intestinal contractions be-
tween the first post-duodenal and the first cecum images.
These findings were used as the gold standard for testing our
system. The parameter vector was set to the initial value

using an
exhaustive search in the following way. For , we looked for
value which let 95% of contractions pass to the second stage.
This value guarantees that most of the contractions pass to
the second stage, while a substantial reduction in the number
of frames to be analyzed is achieved. The 95% threshold was
chosen after several tests and the visual analysis of the filtered
sequences. For and , we created a first qualitative vali-
dation step by means of visual mosaics, in which all the video
frames were sequentially represented and those frames selected
as wall (or tunnel) frames were surrounded by a color square,
in the same way as in Fig. 1. The fine tuning of the and

values was performed by means of the manual counting of
the true positives and false positives of those mosaics with the
best qualitative results. Finally, the selected and values
corresponded to the parameter values showing the best results
in terms of precision, which in both cases were around 92%.

We followed the leave-one-out strategy for the experimental
design: one video was separated for testing while the nine re-
maining videos were used for training the SVM classifiers using
undersampling, i.e., taking a random sampling of noncontrac-
tions equal to the number of contractions. Feature vectors of
54 elements were made up for each sample. These vectors con-
sisted of nine features obtained from the feature selection pro-
cedure pointed out in Section III-C, which consisted of

, entropy, inertia, and inverse differential moment, applied to
the sequence of nine frames defined by each sample.

1http://www.givenimaging.com

A. Positive and Negative Detection Rates

In order to accomplish a detailed performance analysis of
our approach, we provide the study of each separate stage in the
cascade. Tables I, II, and III show the performance results of
stages 1, 2, and 3, respectively. For each stage, certain number
of frames arrive at the input (column Frames), containing a
number of intestinal contractions labeled by the expert (column
Findings). The quotient Noncontraction frames/Number of
findings represents the imbalance rate at the input of the stage
(column Imbalance Rate). The output columns consist of the
number and the percentage of frames and findings passing to
the next stage, and the resulting imbalance rate. In addition
to this, the rate of missing findings, i.e., findings which were
wrongly filtered as noncontractions, and the rate of noncon-
traction frames, i.e., those noncontractions passing to the next
stage of the cascade, is provided.

• Stage 1: Table I shows that the overall number of frames
at the output of stage one is about 11% the input, i.e., the
system rejects 89% of the frames in this stage. But despite
this high reduction in the number of frames, almost every
finding was kept (97%), i.e., just around 3% of the findings
were wrongly rejected as noncontractions. At the output of
stage one, the imbalance ratio was reduced about 10 times,
from 60.3 to 5.9.

• Stage 2: At the output of this stage about 28% of the frames
were rejected, keeping 96% of the findings provided by
stage one. The overall imbalance rate was reduced to 3.6.
In addition to this, the sum of the loss of findings, taking
into account both stage one and stage two, set the rate of
detected contractions at the output of stage two about 93%,
as can be observed in the column %Findings in video in
Table II. As in the previous stage, the reduction of the im-
balance rate is substantial, while the loss in contractions
appears to be reasonable (only 7% of all existing contrac-
tions in video).

• Stage 3: The output of stage three is at the same time the
output of the system. Thus, we can analyze the output
of stage three both in terms of stage performance and
global performance. The stage performance is pictured
in Table III, while the global performance analysis is de-
ployed in Table IV and will be the object of analysis in the
next paragraphs. Table III shows that the SVM classifier
yields a reduction of about 71% in the number of frames
at the output, keeping 75% of the contractions provided by
stage two. Moreover, the imbalance rate of the final data
set is reduced to 0.7.

Finally, a global system assessment must provide: how many
of the existing contractions our system is able to detect (sen-
sitivity), how many of the existing noncontractions our system
is able to reject (specificity), and which the ratio between real
contractions detected and the total number of sequences at the
output of the system is (precision). In addition to the former,
a false alarm ratio (FAR) between the false contractions at the
output of the system and the existing contractions in the video
provides the expert with useful information. A rigorous defini-
tion of these quantities in terms of true positives (TP), true neg-
atives (TN), false positives (FP), and false negatives (FN) can
be stated as follows.
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TABLE I
PERFORMANCE ANALYSIS FOR THE FIRST STAGE OF THE CASCADE

TABLE II
PERFORMANCE ANALYSIS FOR THE SECOND STAGE OF THE CASCADE

TABLE III
PERFORMANCE ANALYSIS FOR THE THIRD STAGE OF THE CASCADE

Table IV summarizes the performance results of the cascade
system. Our approach achieves an overall sensitivity of 70.08%,
peaking 80% for the study referred to as Video 1—the high
overall specificity value of 99.59% is typical of imbalanced
problems. However, FAR and precision carry insightful infor-
mation about what the output is like. The resulting precision
value of 60.26% tells us that 6 out of 10 frames in the output
correspond to true findings. FAR is similar, but in terms of noise
(the bigger the FAR, the larger the number of false positives),
and normalized by the number of existing contractions. For
different videos providing an output with a fixed precision,
those with the highest number of findings in video will have
lower FAR. In this sense, a FAR value of one tells us that we
have obtained as many false positives as existing contractions

in video. FAR and precision values are usually related, and
Table IV shows that the peaks of performance for both mea-
sures are found in the same two studies (Video 6 and Video 7,
outlined in bold type).

Table V shows the specific detection rate of the intestinal
contractions corresponding to the complete occlusive and com-
plete nonocclusive patterns characterized in Section II-B, i.e.,
those sequences in which the camera is pointing to the center
of the lumen for the nine frames, showing either an occlusive
or a nonocclusive contraction. These sequences represent the
clearest patterns of contractions and their detection rates, which
should be very high, provide relevant information regarding the
robustness of the system, as well as potential indicators for a
further clinical assessments. The comparison between the de-
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TABLE IV
GLOBAL SYSTEM PERFORMANCE

TABLE V
DETECTION RATE FOR PATTERNS OF COMPLETE OCCLUSIVE COMPLETE NONOCCLUSIVE CONTRACTIONS

tection rate for this type of contractions and the specific case of
occlusive nonocclusive set is plotted in Fig. 8. A parallel be-
havior between the detection rate of occlusive and nonocclusive
patterns and the generic contractions can be observed, except
for the case of Video 8, where a slight decrease in sensitivity is
observed for the occlusive case (notice the low number of occlu-
sive contractions found in this video, which may likely produce
an impact in the obtained value). An overall sensitivity of 85.8%
was achieved for the occlusive+nonocclusive set, peaking at
93.2% for Video 5.

B. Assessment of the Density of Contractions

The main aim of this study is focused on the assessment of
the ability of our system to describe the pattern of the density
of intestinal contractions for each video. In order to assess this,
we must answer two main questions: 1) which is the divergence
shown in the labeling of the same video by different specialists,
and 2) whether our system performs a labeling which is sim-
ilar to that provided by the specialists. The former is linked to
the interobserver variability, while the latter is linked to the di-
vergence of the labeling of our system in terms of interobserver
variability.

The first step is the assessment of the variability of the la-
beling between-experts, both in terms of absolute labeling and in
terms of density of contractions. For this aim, two different spe-
cialists labeled all the videos. For the absolute labeling assess-
ment, we calculated the % of labels of Expert 1 that were present

Fig. 8. High detection rates (up to 95%) are obtained for complete occlusive
and complete nonocclusive contractions. Detection rates for the generic case are
plotted in black for comparison purposes.

within the Expert 2 labels set, and vice versa. Thus, for each
video we had two measures of coincidence of labels; in the ideal
case, both experts would provide 100% of coincident labels. The
results plotted in Fig. 9 show a high agreement between experts
in terms of absolute labeling. Fig. 9(a) plots the histogram of
studies regarding the coincidence of labels, and Fig. 9(b) ren-
ders the box plot showing the distribution of coincident labeling
in quartiles, with half of the studies over 90% of coincident la-
beling, three out of four videos over 83%, and only two outliers
in 20 measures showing coincidence values around 65%. Re-
garding the interobserver assessment in terms of density of con-
tractions, we performed the following analysis. For each video,
a histogram of the intestinal contractions was created, grouping
all the labeled contractions in bins spanning 3 min (360 video
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Fig. 9. Interobserver agreement in terms of coincident labels. (a) Histogram of
studies regarding coincident labels. (b) Box plot showing median value around
90% of coincident labels and three out of four studies over 83% of agreement.

frames). The first postdoudenal and first cecal images, namely,
the region of analysis, were fixed by the first specialist. A Kol-
mogorov–Smirnov hypothesis test [24] was performed. The null
hypothesis for this test is that and have the same contin-
uous distribution, where and are the labeling patterns
provided by the experts 1 and 2, respectively. The alternative
hypothesis is that they have different continuous distributions.
We reject the null hypothesis if the test is significant at the 95%
level. The test resulted negative for all the 10 videos, providing a
mean p-value of . This result yields the conclusion
that both specialists obtain similar patterns in terms of density
of labels.

In order to answer the second question, we performed the
same hypothesis test, including the system output. The null hy-
pothesis for this test is that and have the same contin-
uous distribution, where is the pattern provided by the expert
1 and is the pattern provided by the system. We repeated the
test by substituting by , and calculated the p-value as the
mean of both tests, only if the test resulted negative for both
the experts. This test resulted negative for 9 out of 10 videos at
the 95% level, showing a mean p-value of . Fig. 10
shows the bar charts of the histograms for specialist 1, system
output, and the cumulative density function (cdf), on which the
Kolmogorov–Smirnov test is based, for (a) a negative test (Video
3) and (b) a positive test (Video 5). It can be seen that the only
video rejected by the test, which showed a p-value of 0.0004,
presents a systematic over-detection of contractions, which is
distributed in a similar amount along the video. From this result
we can conclude that the patterns obtained by the experts and the
patterns obtained by our approach are similar in terms of den-
sity of labels, observing a unique case of divergence for Video
5, which presents a systematic increase in the labeling counts.
One likely reason for this divergence can be founded in the pres-
ence of an unusual high number of long sustained contractions
for this video, whose analysis is out of the scope of this paper
since the paradigm of sustained contractions is completely new,
and a rigorous clinical validation should be needed before any
further conclusion might be drawn.

V. DISCUSSION

A. Cascade Classification System

Many authors have applied diverse strategies in order to
tackle the impact that the imbalance ratio has in the perfor-

Fig. 10. Human and system labelling histograms of intestinal contractions for
(a) Video 3 and (b) Video 5. Each bin contains the number of contractions each
3 min. The last row shows the cdf and the KS-test result.

mance of classification, involving stratified sampling, cost-sen-
sitive approaches, different implementations of decision trees
and bagging, and the use of several metrics for performance
measurement, mainly [25]–[29]. In our strategy, each stage
is tuned to prune as many noncontraction frames as possible,
trying to minimize the loss of true positives, and achieving
in this way an effective reduction in the imbalance ratio of
the data. The last stage of the cascade, consisting of the SVM
trained by means of under-sampling, is to face a classification
problem with an imbalance ratio about 1:5, in contrast with the
1:50 at the input of the system. This reduction in the imbalance
ratio is shown to be an effective way of tackling the problem of
classification in this kind of scenario. In addition to this, one
more important feature must be outlined: the modular shape
of the system lets the expert identify new targets in the video
analysis procedure, providing the chance to easily include
them as new filter stages, and adding domain knowledge to the
system in a natural and flexible way.

One of the main considerations taken into account for the se-
lection of the SVM classifier was its sensitivity to the skewed
distribution of the data sets. The SVM takes into account sam-
ples which are close to the decision boundaries, namely, the
support vectors, and it tends to be unaffected by samples lying
far away. Additionally to the former, stratified sampling tech-
niques have been proved to be efficient in the improvement
of performance of several classifiers, including SVMs [30]. In
our approach, several methods of sampling were tested, and
under-sampling yielded the highest reliability (a detailed anal-
ysis and discussion about the design of these experiments can be
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Fig. 11. Some example sequences provided by the system. (a) Correctly detected contractions. (b) Nondetected contractions (false negatives). (c) Sequences which
had not been labeled by the experts, but detected as contractions (false positives).

found in the [31] and [32]). Regarding the computation time, the
feature extraction and training procedure were accomplished in
about 3 h, while the final classification was performed in less
than 1 min using a standard PC ( GHz processor).

B. Qualitative Analysis of the Classification Results

Fig. 11 shows a set of paradigmatic examples for (a) detected
contractions (true positives), (b) not detected contractions (false
negatives), and (c) sequences which had not been previously la-
beled by the experts, but which our system classified as contrac-
tions (false positives). The detected contractions [see Fig. 11(a)]
basically correspond to the paradigm of phasic contractions de-
scribed in Section II-B. It must be noticed that the presence of
turbid liquid in some frames does not result in a rejection of
this sequence, because only the manifest turbid sequences are
rejected.

The missed contractions [see Fig. 11(b)] share some common
features. Firstly, the open lumen is not always present at the
beginning and the end of the sequence. It must be noticed as
well that the motion impression that the expert perceives during
the video visualization is not present in the deployed sequence
of frames. In this sense, we performed some tests which con-
sisted of showing the experts a set of paradigmatic sequences
containing doubtful contractions both by visualizing them in
the video at a visualization rate of two frames per second, and
showing the same sequences deploying the nine frames as in
Fig. 11. We found that the experts usually labeled a higher
number of contractions during the video visualization than
looking at the deployed sequence. This fact drives us to think
that the motility characterization should be performed in more
subtle detail, in order to detect the apparently slight changes
in some sequences shown in Fig. 11(b), but which actually
seem to be clear for the expert during the visualization process.
Regarding those contractions missed by the rejection of turbid
frames, we must highlight that although the percentage of
frames showing intestinal juices in video widely ranges from
15% to 45%, about 2%–15% of missed contractions were
estimated to be due to this effect.

Finally, the false positives analysis supplies very interesting
results. On the one hand, our system shows its ability to de-
tect real contractions which the experts did not get to label.
An example of these sequences is rendered in the fifth row of
Fig. 11(c). A rough study over the false positives of the ten
analyzed videos showed that about 10% of the false positives
consisted of this kind of sequences. On the other hand, the se-
quences shown in Fig. 11(c) display the inherent difficulty re-
lated to the high variability of patterns present at the output of
the system: the lateral movement of the camera while focusing
the lumen which can be confused with the pattern of its con-
traction, the differences in illumination creating shadows which
can be confused with the lumen, the multiple patterns of wrin-
kles which can provide a high response to the lumen detector,
and the residual presence of patterns of turbid liquid, share the
main responsibility in the false positives. We suggest that many
of these problems may be tackled by a deeper study about the
textural information provided by the lumen, both in the relaxed
stage and the contraction activity.

Regarding the assessment of the absolute labelling, we would
like to highlight a final comment. Providing that the length of a
phasic contraction is expected to be less or equal to nine frames,
a finding can be assumed to be detected if the system label is
set within a window of frames, which is the minimal
jitter physiologically supported. This is the strategy employed
for the results of absolute labelling shown in Section IV. The
use of only one expert as a ground truth is justified since the in-
terobserver variability study provides statistical evidence of the
equivalence of the labelling of different experts. Nevertheless,
we admit that the use of an averaged result from multiple ex-
perts would grant an asymptotical outcome, provided that those
studies are available. For the sake of clarity, and without any sta-
tistical weight, the obtained results can be compared with those
drawn from a uniform distribution from which a number of find-
ings is randomly sampled. This number of findings can be ob-
tained from a normal distribution with the mean and variance
empirically obtained from the experts’ findings in the different
studies. In this case, our experiments show a ground under 20%
sensitivity, 20% precision and 80% FAR, which would be the
result associated to a random labelling under the hypothesis of
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Fig. 12. Operation points from the ROC curve segments using the forward parameter selection procedure for (a) , (b) , (c) , and (d) . Each symbol
represents each of the different five runs. The different points of each symbol represent the different performance pairs of sensitivity versus FP-ratio.

a uniform distribution of findings. In addition to the former, the
proposed strategy allows the thorough numerical analysis pro-
vided in Tables I–V, which conveys specific information about
each step in the system.

C. Validation of the System Operation Point

Providing that the parameter set
was obtained in an exhaustive empirical search, we must as-
sess that does correspond with an optimal operation point,
in terms of system performance. In order to assess this issue, we
proceeded with a forward-propagation algorithm for parameter
selection, which is deployed in detail in Appendix I. Both the
fast forward algorithm and the performance criteria chosen are
justified by the following reasons. On the one hand, it must be
taken into account that when we vary one parameter, we must
rerun all the system for each of the nine videos used for training,
and we must apply a new leave-one-out strategy for each of
them, training their classifiers using the eight remaining videos.
On the other hand, a performance criterion function based on
the global classification error does not appear to be a reliable
metric in this context. In order to tackle the issue of performance
assessment in imbalanced problems, several authors have pro-
posed different solutions, including the use of the g-metric, the
F-metric, and others [30]. Among the clinical community, the
use of a trade-off between sensitivity and some other measure is
widely extended. For our case, we requested our experts to pro-
vide us with the reference of the performance threshold which

should be used in the trade-off function, arriving at a final com-
promise around sensitivity %.

Figs. 12 and 13 represent a zoom into the region of the
receiver operating characteristic (ROC) curve [33] in which
our system is operating. Regarding FP-ratio, the system
performance ranges between the intervals [0.6%, 0.9%]
for Fig. 12(a) and (b) and Fig. 13(a), and between [0%,
5%] for Fig. 12(b). Regarding sensitivity, the system per-
formance ranges between the intervals [62.0%, 70.0%] for
Fig. 12(a) and (b) and Fig. 13(a) and between [60.0%, 95.0%]
for Fig. 13(b). We must recall that one of the characteristics of
imbalanced problems is related to the high values in specificity
that they present, typically about 99%, which provides the
consequent output of FP-ratio to be around the intervals [0.6%,
0.9%] for Fig. 12(a) and (b) and Fig. 13(a). Fig. 12 plots
the points of the ROC curve segments corresponding to the
different operation points provided by the different values of
the parameter vector after five runs. Each run is represented
with a different symbol and color. Each graph (a), (b), (c),
and (d) corresponds with one parameter in ( ,
and ). Fig. 13 shows the points of the same ROC curve
segments clustered by the same parameter. In these plots, each
operation point is centered in the mean value of sensitivity and
FP-ratio after the five runs, and the length of the ellipses axes
is proportional to its standard deviation. The trade-off between
sensitivity and specificity is kept for each run: A lower FP-ratio
implies a lower specificity, and it is also accompanied by a
lower value of sensitivity. Furthermore, our system appears
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Fig. 13. Operation points from the ROC curve segments using the forward parameter selection procedure for (a) , (b) , (c) , and (d) , grouped by
parameter value. The mean of each ellipse represents the mean of the performance pair obtained for that parameter after five runs. The axes of the ellipses are
proportional to the resulting mean variance.

TABLE VI
PERFORMANCE OPERATION POINT FOR THE DIFFERENT PARAMETERS

to be stable, in the sense that for several runs, the resulting
operation point is confined in the ellipses drawn in the plots
rendered in Fig. 13(a)–(c), showing no hysterical responses. We
can observe the monotonically growing curves for the different
parameter values, and the global displacement of the curve
segment from the 60% to the 70% of sensitivity. Parameter
presents the widest range of variability, being consistent with
the role of , which controls the margins which directly affect
the support vectors used for classification.

The final performance of the system was calculated in two
different ways: 1) averaging the performance point of the five
runs of the validation procedure tuned with , and
2) averaging five runs of the system tuned in . Table VI
shows these results in comparison with the performance of the
system tuned to , previously exposed. The final outcome con-
firms our hypothesis over , since the confidence intervals of
the performance values for the heuristically obtained parame-
ters and those provided by the forward-propagation algorithm
overlap both for sensitivity and FAR, assessing the equivalence
of and in terms of performance.

A final remark must be mentioned regarding the suitability
of including value in the previous analysis. The
represents the scale value which best fits the lumen size. If this
value were smaller, the LoG detector would tend to highlight
folds, wrinkles, and/or intestinal content as false detections.
Conversely, should this value be larger, the LoG detector would
not detect the lumen hole at all at the maximum contraction
frame. The case of , and is different. The modi-
fication of each of these thresholds produces a different output
at each level of the cascade, which will finally have a direct
impact in the deal between false positives and true positives.
The final SVM classifier will learn depending on the sequences
arriving at the final stage, and the characteristics of these sets
are to be different depending on the values. In other words,
while the represents the optimal scale value for lumen
segmentation, the values represent degrees of freedom within
the system to be tuned.

VI. CONCLUSION

This work addressed the problem of the automatic detection
of intestinal contractions in capsule video endoscopy, a novel
and highly challenging issue in medical imaging. The main nov-
elty of our contribution is based on tackling the assessment of in-
testinal motility with a machine learning approach, which joins
both classical image processing techniques and the use of di-
verse strategies for facing the low prevalence of contractions in
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video. The main outcome is that we turned a useful but not fea-
sible clinical routine, such as the manual labeling of intestinal
contractions in video endoscopy studies, into a feasible clinical
routine by means of their automatic detection, obtaining reason-
able performance results, and providing the specialists with the
main source of information needed for the further development
of this novel field of clinical research.

We showed the design of the system in terms of sequential
stages to be helpful from a two-fold perspective. On the one
hand, by using this modular perspective, domain knowledge can
be easily added to the system by means of the inclusion of new
sequential stages to the cascade. On the other hand, we showed
the rejection of negatives in a sequential way to be a useful
strategy for dealing with this type of skewed data. We evalu-
ated the accuracy of our approach, assessing by means of the
interobserver variability tests that the patterns obtained by both
our system and the experts are similar.

VII. FUTURE WORK

A special consideration must be taken about the enormous
amount of information provided by this type of images. In this
sense, the further analysis of dynamics involved in intestinal
motility represents one of the most interesting perspectives of
this work from the point of view of the physician. We argue
that using dynamic information obtained through the optical
flow analysis of each sequence can provide a promising line of
research, which could help in the typification of the intestinal
contractions and the discrimination of certain pathologies.
The analysis of the speed of the intestinal contractions, their
length in time (including the study of sustained contractions)
and their degree of occlusion appear as new paradigms which
deserve deeper and separate consideration. The extent to which
diverse information (obtained from the automatic detection
of sequences containing intestinal juices, quiet regions of
the video, parameters related to transit time, relative and/or
absolute position of the pill within the gut, etc.) can be joined
together in order to provide an initial framework for clinical
diagnosis constitutes challenging fieldwork for future contribu-
tions, in which promising results have been presented recently
[34]–[36].

Other lines of research our group is currently involved in com-
prise finding textural descriptors for the inclusion of information
associated to the wrinkle pattern by means of both the analysis
of characteristic radial patterns [37], [38], and other features
based on eigenmotion [39]. Finally, we propose to handle the
skewed distributions of the data sets by both automatically iden-
tifying wide regions of the feature space associated with non-
contractions and improving the classifier performance by means
of ensemble methodologies [40].

APPENDIX I
FAST-FORWARD PARAMETER SELECTION ALGORITHM

The procedure used essentially matches the following high-
lights: We reset all the parameters to , and established a
range of possible values for each of them: 16 values for
within the interval [0:15], 11 values for within the interval
[10:210], 11 values for within the interval [500:1000], and
the eight empirically selected values for [0.001, 0.005,
0.010, 0.030, 0.050, 0.100, 0.500, 1.000]. The choice of these
intervals was performed based on the minimum and maximum
values for each stage. The interval of the last parameter was
carefully selected based on the observation of a substantial
variation of the classifier performance. After the initialization
step, the system was evaluated for all the possible values of
within the defined range, and the best operation point
was selected according to the performance criteria defined
in Algorithm 1. The value of was substituted by ,
repeating the same procedure for the rest of the parameters
in a sequential way ( , and ). The whole procedure
was repeated five runs and the final set was obtained
by averaging . A trade-off was stated from the
physicians’ perspective of a working point around a 70% of
sensitivity. This trade-off was completed by the use of the for-
mula shown in the performance criterion, which searches for
a valance between sensitivity and FAR. This formula allows
a further tuning by means of the and coefficients, which
play the role of weighting both measures.

Algorithm 1

1: BEGIN
2: SET ranges for parameters:
3: {16 values}
4: {11 values}
5: {11 values}
6:

{8 values}
7: for to do
8: Set parameters:

{initialization}
9: for to do

10: Calculate the system performance substituting
with each value of .

11: Apply the Performance Criterion to obtain
.

12: Substitute with in .
13: end for
14:
15: end for
16:
17: END
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Performance Criterion:

For all the performance pairs (Sensitivity, FAR) obtained
for each parameter:

if For all the pairs, Sensitivity then

We chose the parameter that achieves the higher
sensitivity.

else

We select the two parameters with a closest value to
70 (higher or lower)

We choose the parameter which minimizes the error
function:

, using

end if
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