|
David Fernandez, Josep Llados and Alicia Fornes. 2011. Handwritten Word Spotting in Old Manuscript Images Using a Pseudo-Structural Descriptor Organized in a Hash Structure. In Jordi Vitria, Joao Miguel Raposo and Mario Hernandez, eds. 5th Iberian Conference on Pattern Recognition and Image Analysis.628–635.
Abstract: There are lots of historical handwritten documents with information that can be used for several studies and projects. The Document Image Analysis and Recognition community is interested in preserving these documents and extracting all the valuable information from them. Handwritten word-spotting is the pattern classification task which consists in detecting handwriting word images. In this work, we have used a query-by-example formalism: we have matched an input image with one or multiple images from handwritten documents to determine the distance that might indicate a correspondence. We have developed an approach based in characteristic Loci Features stored in a hash structure. Document images of the marriage licences of the Cathedral of Barcelona are used as the benchmarking database.
|
|
|
Jaume Gibert, Ernest Valveny and Horst Bunke. 2011. Vocabulary Selection for Graph of Words Embedding. In Vitria, J., J.M.R. Sanches and M. Hernández, eds. 5th Iberian Conference on Pattern Recognition and Image Analysis. Berlin, Springer, 216–223. (LNCS.)
Abstract: The Graph of Words Embedding consists in mapping every graph in a given dataset to a feature vector by counting unary and binary relations between node attributes of the graph. It has been shown to perform well for graphs with discrete label alphabets. In this paper we extend the methodology to graphs with n-dimensional continuous attributes by selecting node representatives. We propose three different discretization procedures for the attribute space and experimentally evaluate the dependence on both the selector and the number of node representatives. In the context of graph classification, the experimental results reveal that on two out of three public databases the proposed extension achieves superior performance over a standard reference system.
|
|
|
Jaume Gibert, Ernest Valveny and Horst Bunke. 2011. Dimensionality Reduction for Graph of Words Embedding. In Xiaoyi Jiang, Miquel Ferrer and Andrea Torsello, eds. 8th IAPR-TC-15 International Workshop. Graph-Based Representations in Pattern Recognition.22–31. (LNCS.)
Abstract: The Graph of Words Embedding consists in mapping every graph of a given dataset to a feature vector by counting unary and binary relations between node attributes of the graph. While it shows good properties in classification problems, it suffers from high dimensionality and sparsity. These two issues are addressed in this article. Two well-known techniques for dimensionality reduction, kernel principal component analysis (kPCA) and independent component analysis (ICA), are applied to the embedded graphs. We discuss their performance compared to the classification of the original vectors on three different public databases of graphs.
|
|
|
Marçal Rusiñol, David Aldavert, Dimosthenis Karatzas, Ricardo Toledo and Josep Llados. 2011. Interactive Trademark Image Retrieval by Fusing Semantic and Visual Content. Advances in Information Retrieval. In P. Clough and 6 others, eds. 33rd European Conference on Information Retrieval. Berlin, Springer, 314–325. (LNCS.)
Abstract: In this paper we propose an efficient queried-by-example retrieval system which is able to retrieve trademark images by similarity from patent and trademark offices' digital libraries. Logo images are described by both their semantic content, by means of the Vienna codes, and their visual contents, by using shape and color as visual cues. The trademark descriptors are then indexed by a locality-sensitive hashing data structure aiming to perform approximate k-NN search in high dimensional spaces in sub-linear time. The resulting ranked lists are combined by using the Condorcet method and a relevance feedback step helps to iteratively revise the query and refine the obtained results. The experiments demonstrate the effectiveness and efficiency of this system on a realistic and large dataset.
|
|
|
Jaume Gibert, Ernest Valveny and Horst Bunke. 2010. Graph of Words Embedding for Molecular Structure-Activity Relationship Analysis. 15th Iberoamerican Congress on Pattern Recognition.30–37. (LNCS.)
Abstract: Structure-Activity relationship analysis aims at discovering chemical activity of molecular compounds based on their structure. In this article we make use of a particular graph representation of molecules and propose a new graph embedding procedure to solve the problem of structure-activity relationship analysis. The embedding is essentially an arrangement of a molecule in the form of a vector by considering frequencies of appearing atoms and frequencies of covalent bonds between them. Results on two benchmark databases show the effectiveness of the proposed technique in terms of recognition accuracy while avoiding high operational costs in the transformation.
|
|
|
Muhammad Muzzamil Luqman, Josep Llados, Jean-Yves Ramel and Thierry Brouard. 2010. A Fuzzy-Interval Based Approach For Explicit Graph Embedding, Recognizing Patterns in Signals, Speech, Images and Video. 20th International Conference on Pattern Recognition. Springer, Heidelberg, 93–98. (LNCS.)
Abstract: We present a new method for explicit graph embedding. Our algorithm extracts a feature vector for an undirected attributed graph. The proposed feature vector encodes details about the number of nodes, number of edges, node degrees, the attributes of nodes and the attributes of edges in the graph. The first two features are for the number of nodes and the number of edges. These are followed by w features for node degrees, m features for k node attributes and n features for l edge attributes — which represent the distribution of node degrees, node attribute values and edge attribute values, and are obtained by defining (in an unsupervised fashion), fuzzy-intervals over the list of node degrees, node attributes and edge attributes. Experimental results are provided for sample data of ICPR2010 contest GEPR.
|
|
|
Jaume Gibert and Ernest Valveny. 2010. Graph Embedding based on Nodes Attributes Representatives and a Graph of Words Representation. In In E.R. Hancock, R.C.W., T. Windeatt, I. Ulusoy and F. Escolano,, ed. 13th International worshop on structural and syntactic pattern recognition and 8th international worshop on statistical pattern recognition. Springer Berlin Heidelberg, 223–232. (LNCS.)
Abstract: Although graph embedding has recently been used to extend statistical pattern recognition techniques to the graph domain, some existing embeddings are usually computationally expensive as they rely on classical graph-based operations. In this paper we present a new way to embed graphs into vector spaces by first encapsulating the information stored in the original graph under another graph representation by clustering the attributes of the graphs to be processed. This new representation makes the association of graphs to vectors an easy step by just arranging both node attributes and the adjacency matrix in the form of vectors. To test our method, we use two different databases of graphs whose nodes attributes are of different nature. A comparison with a reference method permits to show that this new embedding is better in terms of classification rates, while being much more faster.
|
|
|
Salim Jouili, Salvatore Tabbone and Ernest Valveny. 2010. Comparing Graph Similarity Measures for Graphical Recognition. Graphics Recognition. Achievements, Challenges, and Evolution. 8th International Workshop, GREC 2009. Selected Papers. Springer Berlin Heidelberg, 37–48. (LNCS.)
Abstract: In this paper we evaluate four graph distance measures. The analysis is performed for document retrieval tasks. For this aim, different kind of documents are used including line drawings (symbols), ancient documents (ornamental letters), shapes and trademark-logos. The experimental results show that the performance of each graph distance measure depends on the kind of data and the graph representation technique.
|
|
|
Jean-Marc Ogier, Wenyin Liu and Josep Llados, eds. 2010. Graphics Recognition: Achievements, Challenges, and Evolution. Springer Link. (LNCS.)
|
|
|
Joan Mas, Gemma Sanchez and Josep Llados. 2010. SSP: Sketching slide Presentations, a Syntactic Approach. Graphics Recognition. Achievements, Challenges, and Evolution. 8th International Workshop, GREC 2009. Selected Papers. Springer Berlin Heidelberg, 118–129. (LNCS.)
Abstract: The design of a slide presentation is a creative process. In this process first, humans visualize in their minds what they want to explain. Then, they have to be able to represent this knowledge in an understandable way. There exists a lot of commercial software that allows to create our own slide presentations but the creativity of the user is rather limited. In this article we present an application that allows the user to create and visualize a slide presentation from a sketch. A slide may be seen as a graphical document or a diagram where its elements are placed in a particular spatial arrangement. To describe and recognize slides a syntactic approach is proposed. This approach is based on an Adjacency Grammar and a parsing methodology to cope with this kind of grammars. The experimental evaluation shows the performance of our methodology from a qualitative and a quantitative point of view. Six different slides containing different number of symbols, from 4 to 7, have been given to the users and they have drawn them without restrictions in the order of the elements. The quantitative results give an idea on how suitable is our methodology to describe and recognize the different elements in a slide.
|
|