|
Andreas Fischer, Ching Y. Suen, Volkmar Frinken, Kaspar Riesen and Horst Bunke. 2013. A Fast Matching Algorithm for Graph-Based Handwriting Recognition. 9th IAPR – TC15 Workshop on Graph-based Representation in Pattern Recognition. Springer Berlin Heidelberg, 194–203. (LNCS.)
Abstract: The recognition of unconstrained handwriting images is usually based on vectorial representation and statistical classification. Despite their high representational power, graphs are rarely used in this field due to a lack of efficient graph-based recognition methods. Recently, graph similarity features have been proposed to bridge the gap between structural representation and statistical classification by means of vector space embedding. This approach has shown a high performance in terms of accuracy but had shortcomings in terms of computational speed. The time complexity of the Hungarian algorithm that is used to approximate the edit distance between two handwriting graphs is demanding for a real-world scenario. In this paper, we propose a faster graph matching algorithm which is derived from the Hausdorff distance. On the historical Parzival database it is demonstrated that the proposed method achieves a speedup factor of 12.9 without significant loss in recognition accuracy.
|
|
|
Andreas Fischer, Volkmar Frinken, Horst Bunke and Ching Y. Suen. 2013. Improving HMM-Based Keyword Spotting with Character Language Models. 12th International Conference on Document Analysis and Recognition.506–510.
Abstract: Facing high error rates and slow recognition speed for full text transcription of unconstrained handwriting images, keyword spotting is a promising alternative to locate specific search terms within scanned document images. We have previously proposed a learning-based method for keyword spotting using character hidden Markov models that showed a high performance when compared with traditional template image matching. In the lexicon-free approach pursued, only the text appearance was taken into account for recognition. In this paper, we integrate character n-gram language models into the spotting system in order to provide an additional language context. On the modern IAM database as well as the historical George Washington database, we demonstrate that character language models significantly improve the spotting performance.
|
|
|
Volkmar Frinken, Andreas Fischer and Carlos David Martinez Hinarejos. 2013. Handwriting Recognition in Historical Documents using Very Large Vocabularies. 2nd International Workshop on Historical Document Imaging and Processing.67–72.
Abstract: Language models are used in automatic transcription system to resolve ambiguities. This is done by limiting the vocabulary of words that can be recognized as well as estimating the n-gram probability of the words in the given text. In the context of historical documents, a non-unified spelling and the limited amount of written text pose a substantial problem for the selection of the recognizable vocabulary as well as the computation of the word probabilities. In this paper we propose for the transcription of historical Spanish text to keep the corpus for the n-gram limited to a sample of the target text, but expand the vocabulary with words gathered from external resources. We analyze the performance of such a transcription system with different sizes of external vocabularies and demonstrate the applicability and the significant increase in recognition accuracy of using up to 300 thousand external words.
|
|
|
Antonio Clavelli, Dimosthenis Karatzas, Josep Llados, Mario Ferraro and Giuseppe Boccignone. 2013. Towards Modelling an Attention-Based Text Localization Process. 6th Iberian Conference on Pattern Recognition and Image Analysis. Springer Berlin Heidelberg, 296–303. (LNCS.)
Abstract: This note introduces a visual attention model of text localization in real-world scenes. The core of the model built upon the proto-object concept is discussed. It is shown how such dynamic mid-level representation of the scene can be derived in the framework of an action-perception loop engaging salience, text information value computation, and eye guidance mechanisms.
Preliminary results that compare model generated scanpaths with those eye-tracked from human subjects are presented.
Keywords: text localization; visual attention; eye guidance
|
|
|
Nuria Cirera, Alicia Fornes, Volkmar Frinken and Josep Llados. 2013. Hybrid grammar language model for handwritten historical documents recognition. 6th Iberian Conference on Pattern Recognition and Image Analysis. Springer Berlin Heidelberg, 117–124. (LNCS.)
Abstract: In this paper we present a hybrid language model for the recognition of handwritten historical documents with a structured syntactical layout. Using a hidden Markov model-based recognition framework, a word-based grammar with a closed dictionary is enhanced by a character sequence recognition method. This allows to recognize out-of-dictionary words in controlled parts of the recognition, while keeping a closed vocabulary restriction for other parts. While the current status is work in progress, we can report an improvement in terms of character error rate.
|
|
|
Hongxing Gao, Marçal Rusiñol, Dimosthenis Karatzas, Apostolos Antonacopoulos and Josep Llados. 2013. An interactive appearance-based document retrieval system for historical newspapers. Proceedings of the International Conference on Computer Vision Theory and Applications.84–87.
Abstract: In this paper we present a retrieval-based application aimed at assisting a user to semi-automatically segment an incoming flow of historical newspaper images by automatically detecting a particular type of pages based on their appearance. A visual descriptor is used to assess page similarity while a relevance feedback process allow refining the results iteratively. The application is tested on a large dataset of digitised historic newspapers.
|
|
|
Jaume Gibert, Ernest Valveny and Horst Bunke. 2013. Embedding of Graphs with Discrete Attributes Via Label Frequencies. IJPRAI, 27(3), 1360002–1360029.
Abstract: Graph-based representations of patterns are very flexible and powerful, but they are not easily processed due to the lack of learning algorithms in the domain of graphs. Embedding a graph into a vector space solves this problem since graphs are turned into feature vectors and thus all the statistical learning machinery becomes available for graph input patterns. In this work we present a new way of embedding discrete attributed graphs into vector spaces using node and edge label frequencies. The methodology is experimentally tested on graph classification problems, using patterns of different nature, and it is shown to be competitive to state-of-the-art classification algorithms for graphs, while being computationally much more efficient.
Keywords: Discrete attributed graphs; graph embedding; graph classification
|
|
|
Albert Gordo. 2013. Document Image Representation, Classification and Retrieval in Large-Scale Domains. (Ph.D. thesis, Ediciones Graficas Rey.)
Abstract: Despite the “paperless office” ideal that started in the decade of the seventies, businesses still strive against an increasing amount of paper documentation. Companies still receive huge amounts of paper documentation that need to be analyzed and processed, mostly in a manual way. A solution for this task consists in, first, automatically scanning the incoming documents. Then, document images can be analyzed and information can be extracted from the data. Documents can also be automatically dispatched to the appropriate workflows, used to retrieve similar documents in the dataset to transfer information, etc.
Due to the nature of this “digital mailroom”, we need document representation methods to be general, i.e., able to cope with very different types of documents. We need the methods to be sound, i.e., able to cope with unexpected types of documents, noise, etc. And, we need to methods to be scalable, i.e., able to cope with thousands or millions of documents that need to be processed, stored, and consulted. Unfortunately, current techniques of document representation, classification and retrieval are not apt for this digital mailroom framework, since they do not fulfill some or all of these requirements.
Through this thesis we focus on the problem of document representation aimed at classification and retrieval tasks under this digital mailroom framework. We first propose a novel document representation based on runlength histograms, and extend it to cope with more complex documents such as multiple-page documents, or documents that contain more sources of information such as extracted OCR text. Then we focus on the scalability requirements and propose a novel binarization method which we dubbed PCAE, as well as two general asymmetric distances between binary embeddings that can significantly improve the retrieval results at a minimal extra computational cost. Finally, we note the importance of supervised learning when performing large-scale retrieval, and study several approaches that can significantly boost the results at no extra cost at query time.
|
|
|
Muhammad Muzzamil Luqman, Jean-Yves Ramel and Josep Llados. 2013. Multilevel Analysis of Attributed Graphs for Explicit Graph Embedding in Vector Spaces. Graph Embedding for Pattern Analysis. Springer New York, 1–26.
Abstract: Ability to recognize patterns is among the most crucial capabilities of human beings for their survival, which enables them to employ their sophisticated neural and cognitive systems [1], for processing complex audio, visual, smell, touch, and taste signals. Man is the most complex and the best existing system of pattern recognition. Without any explicit thinking, we continuously compare, classify, and identify huge amount of signal data everyday [2], starting from the time we get up in the morning till the last second we fall asleep. This includes recognizing the face of a friend in a crowd, a spoken word embedded in noise, the proper key to lock the door, smell of coffee, the voice of a favorite singer, the recognition of alphabetic characters, and millions of more tasks that we perform on regular basis.
|
|
|
Jean-Marc Ogier, Wenyin Liu and Josep Llados, eds. 2010. Graphics Recognition: Achievements, Challenges, and Evolution. Springer Link. (LNCS.)
|
|