|
Sounak Dey, Anjan Dutta, Juan Ignacio Toledo, Suman Ghosh, Josep Llados and Umapada Pal. 2018. SigNet: Convolutional Siamese Network for Writer Independent Offline Signature Verification.
Abstract: Offline signature verification is one of the most challenging tasks in biometrics and document forensics. Unlike other verification problems, it needs to model minute but critical details between genuine and forged signatures, because a skilled falsification might often resembles the real signature with small deformation. This verification task is even harder in writer independent scenarios which is undeniably fiscal for realistic cases. In this paper, we model an offline writer independent signature verification task with a convolutional Siamese network. Siamese networks are twin networks with shared weights, which can be trained to learn a feature space where similar observations are placed in proximity. This is achieved by exposing the network to a pair of similar and dissimilar observations and minimizing the Euclidean distance between similar pairs while simultaneously maximizing it between dissimilar pairs. Experiments conducted on cross-domain datasets emphasize the capability of our network to model forgery in different languages (scripts) and handwriting styles. Moreover, our designed Siamese network, named SigNet, exceeds the state-of-the-art results on most of the benchmark signature datasets, which paves the way for further research in this direction.
|
|
|
Lluis Pere de las Heras, Oriol Ramos Terrades and Josep Llados. 2017. Ontology-Based Understanding of Architectural Drawings. International Workshop on Graphics Recognition. GREC 2015.Graphic Recognition. Current Trends and Challenges.75–85. (LNCS.)
Abstract: In this paper we present a knowledge base of architectural documents aiming at improving existing methods of floor plan classification and understanding. It consists of an ontological definition of the domain and the inclusion of real instances coming from both, automatically interpreted and manually labeled documents. The knowledge base has proven to be an effective tool to structure our knowledge and to easily maintain and upgrade it. Moreover, it is an appropriate means to automatically check the consistency of relational data and a convenient complement of hard-coded knowledge interpretation systems.
Keywords: Graphics recognition; Floor plan analysi; Domain ontology
|
|
|
Dena Bazazian, Dimosthenis Karatzas and Andrew Bagdanov. 2018. Soft-PHOC Descriptor for End-to-End Word Spotting in Egocentric Scene Images. International Workshop on Egocentric Perception, Interaction and Computing at ECCV.
Abstract: Word spotting in natural scene images has many applications in scene understanding and visual assistance. We propose Soft-PHOC, an intermediate representation of images based on character probability maps. Our representation extends the concept of the Pyramidal Histogram Of Characters (PHOC) by exploiting Fully Convolutional Networks to derive a pixel-wise mapping of the character distribution within candidate word regions. We show how to use our descriptors for word spotting tasks in egocentric camera streams through an efficient text line proposal algorithm. This is based on the Hough Transform over character attribute maps followed by scoring using Dynamic Time Warping (DTW). We evaluate our results on ICDAR 2015 Challenge 4 dataset of incidental scene text captured by an egocentric camera.
|
|
|
Sangheeta Roy and 6 others. 2018. Rough-Fuzzy based Scene Categorization for Text Detection and Recognition in Video. PR, 80, 64–82.
Abstract: Scene image or video understanding is a challenging task especially when number of video types increases drastically with high variations in background and foreground. This paper proposes a new method for categorizing scene videos into different classes, namely, Animation, Outlet, Sports, e-Learning, Medical, Weather, Defense, Economics, Animal Planet and Technology, for the performance improvement of text detection and recognition, which is an effective approach for scene image or video understanding. For this purpose, at first, we present a new combination of rough and fuzzy concept to study irregular shapes of edge components in input scene videos, which helps to classify edge components into several groups. Next, the proposed method explores gradient direction information of each pixel in each edge component group to extract stroke based features by dividing each group into several intra and inter planes. We further extract correlation and covariance features to encode semantic features located inside planes or between planes. Features of intra and inter planes of groups are then concatenated to get a feature matrix. Finally, the feature matrix is verified with temporal frames and fed to a neural network for categorization. Experimental results show that the proposed method outperforms the existing state-of-the-art methods, at the same time, the performances of text detection and recognition methods are also improved significantly due to categorization.
Keywords: Rough set; Fuzzy set; Video categorization; Scene image classification; Video text detection; Video text recognition
|
|
|
ChunYang, Xu Cheng Yin, Hong Yu, Dimosthenis Karatzas and Yu Cao. 2017. ICDAR2017 Robust Reading Challenge on Text Extraction from Biomedical Literature Figures (DeTEXT). 14th International Conference on Document Analysis and Recognition.1444–1447.
Abstract: Hundreds of millions of figures are available in the biomedical literature, representing important biomedical experimental evidence. Since text is a rich source of information in figures, automatically extracting such text may assist in the task of mining figure information and understanding biomedical documents. Unlike images in the open domain, biomedical figures present a variety of unique challenges. For example, biomedical figures typically have complex layouts, small font sizes, short text, specific text, complex symbols and irregular text arrangements. This paper presents the final results of the ICDAR 2017 Competition on Text Extraction from Biomedical Literature Figures (ICDAR2017 DeTEXT Competition), which aims at extracting (detecting and recognizing) text from biomedical literature figures. Similar to text extraction from scene images and web pictures, ICDAR2017 DeTEXT Competition includes three major tasks, i.e., text detection, cropped word recognition and end-to-end text recognition. Here, we describe in detail the data set, tasks, evaluation protocols and participants of this competition, and report the performance of the participating methods.
|
|
|
Lluis Gomez, Marçal Rusiñol, Ali Furkan Biten and Dimosthenis Karatzas. 2018. Subtitulació automàtica d'imatges. Estat de l'art i limitacions en el context arxivístic. Jornades Imatge i Recerca.
|
|
|
Lluis Gomez, Marçal Rusiñol and Dimosthenis Karatzas. 2018. Cutting Sayre's Knot: Reading Scene Text without Segmentation. Application to Utility Meters. 13th IAPR International Workshop on Document Analysis Systems.97–102.
Abstract: In this paper we present a segmentation-free system for reading text in natural scenes. A CNN architecture is trained in an end-to-end manner, and is able to directly output readings without any explicit text localization step. In order to validate our proposal, we focus on the specific case of reading utility meters. We present our results in a large dataset of images acquired by different users and devices, so text appears in any location, with different sizes, fonts and lengths, and the images present several distortions such as
dirt, illumination highlights or blur.
Keywords: Robust Reading; End-to-end Systems; CNN; Utility Meters
|
|
|
Dimosthenis Karatzas, Lluis Gomez, Marçal Rusiñol and Anguelos Nicolaou. 2018. The Robust Reading Competition Annotation and Evaluation Platform. 13th IAPR International Workshop on Document Analysis Systems.61–66.
Abstract: The ICDAR Robust Reading Competition (RRC), initiated in 2003 and reestablished in 2011, has become the defacto evaluation standard for the international community. Concurrent with its second incarnation in 2011, a continuous
effort started to develop an online framework to facilitate the hosting and management of competitions. This short paper briefly outlines the Robust Reading Competition Annotation and Evaluation Platform, the backbone of the
Robust Reading Competition, comprising a collection of tools and processes that aim to simplify the management and annotation of data, and to provide online and offline performance evaluation and analysis services.
|
|
|
David Aldavert and Marçal Rusiñol. 2018. Manuscript text line detection and segmentation using second-order derivatives analysis. 13th IAPR International Workshop on Document Analysis Systems.293–298.
Abstract: In this paper, we explore the use of second-order derivatives to detect text lines on handwritten document images. Taking advantage that the second derivative gives a minimum response when a dark linear element over a
bright background has the same orientation as the filter, we use this operator to create a map with the local orientation and strength of putative text lines in the document. Then, we detect line segments by selecting and merging the filter responses that have a similar orientation and scale. Finally, text lines are found by merging the segments that are within the same text region. The proposed segmentation algorithm, is learning-free while showing a performance similar to the state of the art methods in publicly available datasets.
Keywords: text line detection; text line segmentation; text region detection; second-order derivatives
|
|
|
David Aldavert and Marçal Rusiñol. 2018. Synthetically generated semantic codebook for Bag-of-Visual-Words based word spotting. 13th IAPR International Workshop on Document Analysis Systems.223–228.
Abstract: Word-spotting methods based on the Bag-ofVisual-Words framework have demonstrated a good retrieval performance even when used in a completely unsupervised manner. Although unsupervised approaches are suitable for
large document collections due to the cost of acquiring labeled data, these methods also present some drawbacks. For instance, having to train a suitable “codebook” for a certain dataset has a high computational cost. Therefore, in
this paper we present a database agnostic codebook which is trained from synthetic data. The aim of the proposed approach is to generate a codebook where the only information required is the type of script used in the document. The use of synthetic data also allows to easily incorporate semantic
information in the codebook generation. So, the proposed method is able to determine which set of codewords have a semantic representation of the descriptor feature space. Experimental results show that the resulting codebook attains a state-of-the-art performance while having a more compact representation.
Keywords: Word Spotting; Bag of Visual Words; Synthetic Codebook; Semantic Information
|
|