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Abstract

Word spotting in natural scene images has many applica-
tions in scene understanding and visual assistance. In this
paper we propose a technique to create and exploit an in-
termediate representation of images based on text attributes
which are character probability maps. Our representation
extends the concept of the Pyramidal Histogram Of Char-
acters (PHOC) by exploiting Fully Convolutional Networks
to derive a pixel-wise mapping of the character distribution
within candidate word regions. We call this representation
the Soft-PHOC. Furthermore, we show how to use Soft-
PHOC descriptors for word spotting tasks in egocentric
camera streams through an efficient text line proposal algo-
rithm. This is based on the Hough Transform over charac-
ter attribute maps followed by scoring using Dynamic Time
Warping (DTW). We evaluate our results on ICDAR 2015
Challenge 4 dataset of incidental scene text captured by an
egocentric camera .

1. Introduction

Reading text in the wild is an important task in many
computer vision applications as text carries semantically
rich information about scene content and context. For in-
stance, egocentric cameras have been used for assisting
visually impaired people by reading text detected in the
scene [2]. Furthermore, being able to determine the pres-
ence or absence of given words can improve the understand-
ing of the surrounding context or provide detailed informa-
tion about objects in the scene. Significant advances in the
state-of-the-art in scene text recognition have been made in
recent years [16, 17, 20]. However, the bulk of the empha-
sis has been on the closed dictionary setting which exploits
a large dictionary of known words for training.

In this paper we address the challenge of spotting text
in egocentric scene images. At the same time, we propose
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a general framework without restricting the recognizable
words to a fixed lexicon or dictionary.

Words which are typically out-of-dictionary include,
for instance, price tags, telephone numbers, URLs, dates
or other cases where punctuation marks are present in the
words. To be able to recognize this kind of structured text,
a character based representation of words is needed, since
we can not rely on a restricted collection of words. The
contributions of this paper are:

— we introduce a novel mid-level word representation, we
call it the Soft-PHOC and this representation captures the
intra-word character dependencies;

— we propose a training strategy to learn to effectively
encode unlabeled images;

— we present a new proposal approach for text detection
which is based on text line instead of bounding box, in this
case we employ the Hough Transform in lieu of bounding
box generators; and

— we propose a novel technique to extract multi oriented
bounding boxes for text detection based on the text lines
and their orientation.

The robustness of this approach stems from the capac-
ity of the Soft-PHOC encoder to simultaneously represent
each character individually and the entire word. We argue
that detecting a query word in scene images with a bound-
ing box may be inconsequential, and that the same level of
information can be obtained by localizing the query with
just a line.

The remainder of the article is organized as follows. In
the next section we review work related to our approach. In
Section 3.1 we describe our Soft-PHOC descriptor, and in
Section 4 we show how to use a Hough Transform and Dy-
namic Time Warping in lieu of bounding box proposals for
word spotting. We report our experimental results in Sec-
tion 5, and finally discuss our contribution and draw some
conclusions in Section 6.



2. Related Work

Word spotting in scene images recently attracts a lot of
attention in document image understanding. In this section,
we present a brief introduction to related works including
text detection, text recognition and word spotting methods
that combine both.

Proposal-based text recognition

Deep Convolutional Neural Networks (DCNNs) have be-
come the standard approach for many computer vision
tasks, and DCNN methods are also state-of-the-art for text
recognition. The authors of [12] studied about the problem
of unconstrained text recognition using generic object pro-
posals and a CNN to recognize words from an extensive lex-
icon. However, the generic object proposal approach does
not perform well on text detection tasks. The Text Propos-
als approach [8] introduced a text-specific object proposal
method that is based on generating a hierarchy of word hy-
potheses according to the similarity region grouping algo-
rithm. Later, the authors of [4] fused the Text Proposals
technique with a Fully Convolutional Network (FCN) [19]
in order to achieve high text region recall while consider-
ing significantly fewer candidate regions. In a follow-up
work [3] they improved the pipeline to increase the speed
of the text proposal generator. They also demonstrated the
optimal performance of the text detector in comparison with
the state-of-the-art general object detector technique [ 18] on
text detection tasks. This approach has been applied to com-
pressed images [7]. TextBoxes [14] re-purposed the SSD
detector [15] for word-wise text localization. Exploiting
the robustness SSD, the authors of [10] proposed an atten-
tion mechanism that directly detects the word-level bound-
ing box. Gupta et al. in [9] generated synthetic data and
propose an architecture inspired by FCN and YOLO [11].
Ma et al. in [17] adapt the Faster R-CNN architecture and
extend it to detect text of different orientations by adding
anchor boxes of 6 hand-crafted rotations and 3 aspect ra-
tios. Busta et al. adapted the YOLOvV2 architecture and
added a rotation parameter [0]. They use bilinear sampling
to rectify the word images and a direct application of CTC
to do recognition. Shi et al. in [20] introduce a full per-
spective rectification of words based on spatial transformer
networks.

In this work we do not apply a bounding box proposal ap-
proach and instead detect text based on line proposals de-
rived from a Hough Transform. The advantage of this tech-
nique is that we are not required to generate multi-oriented
bounding box proposals which requires four coordinates for
each proposal. Also, multi-oriented bounding box propos-
als require complex post processing.

Descriptors for word recognition
The proposal-based approaches discussed above work di-
rectly on image content, however there are a few techniques

that work on higher-level representations. The Pyramidal
Histogram Of Characters (PHOC) approach for word spot-
ting was proposed in [1]. The PHOC encodes the spatial
character distribution within words in a binary vector. In [5]
a word spotting technique was proposed which recognizes
characters individually and extracts a bounding box of each
query word according to text proposals. In comparison, we
propose a model capable of learning characters and words
simultaneously. In addition, for the localization of the query
words we employ a novel line detection technique instead
of text proposal pipeline.

Our contributions with respect to the state-of-the-art

In this work we extend the idea of the PHOC descriptor by
directly embedding at a pixel level the histograms of char-
acters which can be both synthesized from a given string
or learned by a DCNN. We employ a character recognition
CNN while in [13] a text recognition network is applied.
The key advantage of our approach is that we learn charac-
ters individually and independently of a lexicon of words.
In lieu of text bounding box proposals, we show how our
character probability maps can be used in a Hough Trans-
form to propose a compact set of candidate text lines for
recognition.

3. The Soft-PHOC Descriptor

We propose an FCN (Fully Convolutional Network [19])
model to reproduce a special flavor of Soft-PHOC in or-
der to learn intermediate image representations that loosely
correspond to character heatmaps. By looking at words in
a pyramidal way we are able to capture spatial character
dependencies and obtain a soft probability distribution of
characters over word patches in scene images. Afterwards,
we show how this mid-level representation of the image can
be used to tackle a word spotting task.

3.1. Soft-PHOC labeling

Exploiting the concept of PHOC (Pyramidal Histogram
Of Characters) [ 1], we devised a procedure for labeling text
in natural scene images in order to learn correlations be-
tween characters within words. Each labeling is encoded di-
rectly in the image, establishing a correspondence between
the pixels of the image and the elements of the annotation.
We first present our labeling strategy by synthesizing the an-
notation from a word transcription and then we show how
to encode it with reference to the spatial extent of the word
in the scene.

As in standard PHOC, we follow a pyramidal approach
to build the histogram of characters but we make the number
of levels in the pyramid depend on the number of characters
in the word n. Therefore, for each word we set the number
of levels in the pyramidal representation equal to the num-
ber of characters it contains. For each level L = 1,...,n
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Figure 1. Soft-PHOC annotation. For instance, if the transcription is “PINTU”, we show how we can define the annotation of class “P” for
the given transcription based on the value at each level of soft-PHOC descriptor.

in the pyramid, we divide the annotation into L spatial seg-
ments which we use as bins to build an histogram of char-
acters. All the histograms for the different levels are then
summed together to provide a compact and fixed-size la-
beling of the transcription, that encodes the position of its
characters. This is possible since every histogram is en-
coded as a fixed length patch with bins of varying width,
depending on the level. The resulting annotation is a tensor
of size H x W x C' where H and W can be arbitrarily cho-
sen and C' is the number of class characters (38 including
alphanumeric characters plus an additional one for punctu-
ation). Since we want to encode the annotation inside the
image reference frame, we choose H and W equal to the
height and width of the rectified cropped word we are en-
coding.

Therefore, at each level L, the annotation tensor is di-
vided into a corresponding number of bins, to which we as-
sign the characters while building the histogram. Since the
pixels occupied by the characters and by the bin sections
may not be perfectly overlapped, we define the lower and
upper bounds of the region of influence for the character at
position p as:

floor(L * (p/n)) x (W/L) (1)
ceil(L s (p/n)) + (W/I) %)

where the [, and u,, define the region of interest of the char-
acter within the word (i.e. the pixels corresponding to the
bin of the histogram). The final annotations are then L1-
normalized in order to obtain a valid character probability
distribution for each pixel. The described annotation proce-
dure is depicted in Fig. 1.

The obtained annotation is a rectangular C'-dimensional
tensor with the same size of the rectified text crop. Each

L
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channel spatially encodes the probability of each pixel of
belonging to a certain character. An example is given in
Fig. 2 where nonzero channels are shown. Afterwards, the
annotation is projected back into the image to its original
position (Fig. 4). A comparison of the annotation tech-
niques also illustrated in Fig. 3. In this example the com-
parison is between strong character labeling technique such
as [5] and our proposed Soft-PHOC labeling.

Figure 2. Example labeling for each character in cropped word im-
ages. The word in this example is “PINTU”. First row shows the
original cropped word and the second row shows the annotations.
Each segment shows the heatmap of each character in the annota-
tion. Note how the probability distribution of each character has
spatial extent.

IStrong Character Labeling| me—) —

Soft-PHOC Labeling ——) —

L

Figure 3. Comparison of the annotation techniques. In this exam-
ple the comparison is between strong character labeling technique
such as [5] and our proposed Soft-PHOC labeling. The darker
color means lower value and the lighter color means higher value.
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Figure 4. Generating Soft-PHOC annotation in the scene images. First, the text region in the scene image should be cropped. Then, it should
be rectified in order to define the Soft-PHOC annotation for the correspond transcription. Next, the character distributions interpolate across

the scene image based on its original localization and orientation.

In order to extend this idea to scene images, we perform
the steps shown in Fig. 4 for each word in the scene. We
start by cropping each text region and rectifying it to obtain
an axes oriented rectangular patch. Afterwards, we define
the Soft-PHOC embedding of the transcription, obtaining
an arbitrary sized 38-dimensional tensor. The Soft-PHOC
representations for each word are then fused together in a
holistic representation of the scene by warping them back in
the image reference system, maintaining their coordinates.
The resulting annotation is a tensor with the same width and
height of the image and a number of channels equal to the
number of character classes we want to recognize (38).

3.2. Soft-PHOC:s Prediction

Our annotation strategy is based on two motivations.
First, given an image, we intend to be able to train an
FCN [19] that produces the Soft-PHOC representation
given an image. The FCN is supposed to output probabil-
ity maps that can be interpreted locally as Soft-PHOC de-
scriptors given a region in the image. The training process
does not depend on character-level annotations, although
character-level annotations can be taken into account when
available to provide a more precise labeling. Second, given
the above annotation scheme, the network training phase is
guided with a certain long-distance context about the exis-
tence of particular characters in different parts of the word.
The concept is similar to the original Histogram of Char-
acters idea on pyramidal levels [1], but the information is
encoded at pixel level instead of having a fixed length bi-
nary descriptor.

3.3. Training Strategy

We use a network architecture inspired by FCN [19] to
learn to estimate Soft-PHOC labellings of scene images. In
this way our network outputs an embedding of generic unla-
beled images into the Soft-PHOC space which can be com-
pared with Soft-PHOC representations of textual queries.
By construction, Soft-PHOC scene embeddings are unbal-
anced since text areas are almost never predominant in the
scenes. In fact, we measured that scene text images contain
around 90% background pixels and only 10% text. At train-

ing time this yields to an optimization problem with unbal-
anced classes which is hard to optimize since the model fo-
cuses more on learning the background rather than the text.
This phenomena is even more important in the case of char-
acter recognition, where each character class has just a few
pixels in comparison to the pixels for the background. To
solve this problem and balance the classes during training,
we rely on three different loss functions based on pixel-wise
masks (see Fig. 5) and their corresponding annotations:

e [;: focuses only on background pixels using a binary
softmax cross entropy loss to discriminate between the
background and the sum of the 37 remaining character
classes. We use a binary mask (Mask1 in Fig. 5) to
consider only non-text regions in the logit output map.
This loss helps to model the background and lower the
false positive rate.

e [o: focuses on text regions and also uses a binary soft-
max cross entropy loss. This loss is complementary
to £1 and uses precisely the complement of the back-
ground mask used for £1 (Mask2 in Fig. 5) to focus
only on text regions and allow the model to learn to
localize words.

e L3: focuses on the text regions plus a small back-
ground context around them by expanding the region
of interest by 50% in all directions (M ask3 in Fig. 5).
Again we use a softmax cross entropy loss, but this
time over all the 38 classes (characters + background).

The three losses defined above are jointly optimized as a
weighted sum loss:

L = ()[1,61+O[2£2+O{3[,3. (3)

In our experiments we use weights with increasing impor-
tance to make the model focus on training to recognize char-
acters more than the background: a; = 0.1, 0 = 1, a3 =
2.5. We trained our model using the Adam Optimizer with
a learning rate of 5 x 1072, The overall network archi-
tecture is shown in Fig. 6. We have trained the network
for 200K iterations based on the word-level annotations on



the synthetic dataset [9]. Then, fin-tuned the model based
on word-level annotations of ICDAR2015 challenge4-task4
dataset for 10K iterations.

4. Line Detection for Queries

In this section we explain the process of detecting a line
for a given word query. Each step of this process is ex-
plained in the following sections as also shown in Fig. 7.

4.1. Bigram Heatmap

To obtain a query-specific heatmap, we use a the bigram
approach. We consider the pixel-wise probability channels
from the trained model that correspond to the characters that
appear in the query word. Moreover, we take into account
the order of the characters in each query beside its individ-
ual characters. The motivation of employing bigrams is to
distinguish between words with similar transcriptions, for
example anagrams such as “listen” and “silent”, based on
the order of the characters in each word. The bigram prob-
ability P, of a given query is computed by multiplying the
character heatmaps two by two following the transcription

order as:
n—1

Py =Y (P(Cy) * P(Ci1)). ©)
=1
where n is the length of the query word (number of char-
acters in the query word), and P(C}) is the probability of
the ith character in the query. For example, if the given
query word is “fext”, the bigram heatmp will be computed
as: (P(t) = P(e)) + (P(e) * P(x)) + (P(x) * P(t)).

4.2. Hough Transform

Once a bigram heatmap for each given query is obtained,
we threshold it to generate a binary mask and apply Hough
Transform on it. We use a soft threshold by discarding all
pixels with probability lower than 0.2. By applying the
Hough Transform voting process on the binary masks we
obtain a set of text lines candidate for a query word.

4.3. Dynamic Time Warping (DTW)

In order to measure the similarity between each line in
the proposal set and the query we extract a Soft-PHOC rep-
resentation of the line and compare it with the descriptor of
the transcription. To obtain the Soft-PHOC of a line, we
extract the corresponding pixels from the 38-dimensional
output tensor of the network. Since each line [ has a differ-
ent length L;, we obtain for each line a Soft-PHOC of size
L; x 1 x 38. On the other hand, for the textual query we
build a representation of size n x 1 x 38, where n depends
on the number of characters in the word.

To compare the line descriptors with the transcription,
we use Dynamic Time Warping to compute the similarities
and find the line that best suits the query. An example of the

Hough lines that we obtain are shown in Fig. 7, color coded
with the similarity scores provided by DTW.

5. Experimental Results

We have evaluated the proposed Soft-PHOC descriptor
in a word spotting application. The goal of word spotting is
to localize in each image a list of given query words. The
benchmark of the experiments is ICDAR2015-Challenge4,
which are incidental images taken from a wearable ego-
vision device. In addition, this dataset provides Strongly
Contextualized list of query words which consists of 100
words per each image, including all the words that appear
in the image and a number of distractor words.

We have considered two evaluation techniques. One is
based on detecting a text line for each query and the other is
based on bounding box detection. In both cases, as shown
in Fig. 8, we take the output of the model and combine the
channels correspondent to the query word characters, in or-
der to obtain heatmaps for the bigrams that compose that
word. By accumulating and thresholding the heatmaps we
get a binary mask for each query. This allows us to have a
region of attention specific to each query, which helps to fo-
cus only on relevant regions of the scene. Then, by applying
the Hough Transform technique, we find a set of proposal
lines for each query.

In order to recognize the correct location of a word we
crop the whole output map in correspondence of each pro-
posal line we sample the output map along each proposal
line. and compare it to the Soft-PHOC embedding of the
query through Dynamic Time Warping (DTW). Based on
the distance scores from DTW, we find the best candidate
line of each query.

In order to evaluate the detected line for each query we
propose two methods. We describe our experimental results
based on the line detection of queries in 5.1. Also, since
the research community tends to represent words based on
bounding boxes instead of line segments as proposed here,
in order to compare our method with the state-of-the-art in
word spotting, we applied a bounding box extraction tech-
nique which is explained in 5.2. It has to be noted that un-
like other methods that localize and then recognize, in our
case the query is driving the localization process. The re-
sulting line segments and bounding boxes that we obtain in
the two evaluations are therefore guided by the query itself,
and not by cues common to text in general.

5.1. Soft-PHOC Evaluation

In the first evaluation technique, we compare the overlap
of each line with its correspondent ground-truth bounding
box as shown in Fig. 8 d(1) and e(1). We consider the line
as a correct match when the line-box overlap measure ex-
ceeds a threshold 7. We evaluate the results for varying
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Figure 6. A Deep Convolutional Neural Network estimating Soft-PHOC descriptors. Our architecture is inspired by FCN [19] and its
output is a pixel-wise character probability map over 38 character classes at each spatial location in the image. Ground-truth Soft-PHOCSs
are synthetically generated from text annotations of word boxes over 38 character classes.

thresholds 7' = [0.3,0.5,0.7] and compute Precision, Re-
call and Accuracy. Results are reported in Tab. 1.

5.2. Comparing Soft-PHOC with State-of-the-art

In the second evaluation method we produce a bounding
box starting from the detected text line of each query. If
the angle of the detected line segment is between +£45°, we
define a vertical line (i.e. with an angle of 90°) passing
in the middle of the horizontal line and with length equal
to the one of the horizontal segment divided by number of
characters in the query. Accordingly, if the angle of the
detected line is between 90° + 45°, we define a horizontal
line (i.e. with an angle of 0°) which passes in the middle
of the detected line and with length equal to the one of the
vertical segment multiplied by the number of characters in
the query word. Therefore, we can obtain a final bounding
box by considering these two lines as its axes.

Consequently, the resulting bounding box is compared
with the ground truth location as shown in Fig. 8§ d(2) and
e(2). Quantitative results are as Precision = 0.25 and
Recall = 0.23 and Hmean = 0.24 while qualitative re-

sults are shown in Fig. 9. Failure cases are also reported in
Fig. 10.

The main purpose of trying the second evaluation was
based on two reasons: first, in order to demonstrate the
capability of our proposed method for extracting bound-
ing box in case if it required. Second, to be able to com-
pare it with existing state-of-the art techniques since in all
previous text spotting work the evaluation was based on
bounding box detection. According to the total numerical
results of this section our results for word spotting seems
to be far from the most recent state-of-the-art results such
as [16, 17, 20]. However, our proposed method is strong
enough to detect accurately a rough spot of the localization
of each query word even in the clutter background scene or
images with the plenty of texts.

6. Conclusions and future work

In this paper we proposed a model to define an inter-
mediate representation of images based on text attributes
which are individual characters. Our representation, the
Soft-PHOC, maintains local information about the charac-
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Figure 7. Line detection for each query. As input we have pixel-wise probabilities of each of the 38 character classes in the input image,
plus a query word which in this example is “DIRECTORY”. We generate a bigram heatmap for the corresponding query according to pixel-
wise probabilistic from the net. Then, through a soft thresholding we create a binary mask that we use as input for the Hough Transform.
From the stack of candidate Hough lines, we compute the distance between the Soft-PHOC from pixel-wise probabilities of each line and
the Soft-PHOC descriptor of the query word. Since the text box width is variable at recognition time, we generate the query Soft-PHOC at
a fixed width and use DTW to calculate the similarity with the estimated Soft-PHOC in the image.
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Figure 8. Extracting a sample query (CARPARK) at a scene text image. At (a) we have a bigram heatmap of the query. (b) a binary mask.
(c) stack of detected hough lines from the binary mask. (d1) find the best matched line (green) of the query. (el) evaluate the line with
the ground-truth bounding box (red). (d2) define a vertical line (blue) for the best matched line (green) and (e2) extract a bounding box
(yellow) from these two detected lines and compare it with the ground-truth bounding box (red).

Figure 9. Qualitative results, the green lines are the detected lines from DTW and the blue line is the vertical line. Yellow bounding box is
the extracted bounding box from the lines and red bounding box is the ground-truth.



Figure 10. Failure cases. From left to right, the first image contains vertical text, the red bounding boxes are the ground-truth and the green
lines are the best matched line for each query. The second image is showing the problem of incorrect localization due to clutter affecting
the responses for some characters. The third image has two similar words close to each other in the same image. The green line shows the
best matched line for query word of “THE”. The fourth image is related to the cases when the word is written in an unconventional format
and the detected line (in green for the word “NOW?”) results to have a wrong localization, in this case both words start and end with the
same letter, so what you get is the average location between the two words.
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and the ground-truth bounding box.
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