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Abstract—In this paper we present a segmentation-free
system for reading text in natural scenes. A CNN architecture
is trained in an end-to-end manner, and is able to directly
output readings without any explicit text localization step. In
order to validate our proposal, we focus on the specific case
of reading utility meters. We present our results in a large
dataset of images acquired by different users and devices, so
text appears in any location, with different sizes, fonts and
lengths, and the images present several distortions such as
dirt, illumination highlights or blur.
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I. INTRODUCTION

When attempting to design algorithms for endowing
computers with the ability to read text from images, one
often stumbles upon Sayre’s paradox [1]. This dilemma
is expressed as: “text cannot be recognized without being
segmented and cannot be segmented without being rec-
ognized”. Such paradox is mostly apparent when dealing
with handwritten text, but is also patent when considering
scene text. Individual words have to be separated among
them when dealing with cursive text in the same way
that textual elements have to be separated from cluttered
environments in natural scene text before executing the
reading process. However, in order to effectively perform
such segmentations, one should ideally recognize which
text is written. This contradiction is usually addressed
through first engineering text / non-text classifiers for a
later proper text recognition process [2].

Pipelines that first segment text that is later fed to a
recognition process present certain drawbacks. On one
hand, any segmentation errors will affect the subsequent
text recognition step. In order to overcome this, usually
over-segmentation strategies are adopted, e.g. [3], [4]. On
the other hand, the ground-truth acquisition for training
the final systems will be more expensive since one has
to provide not only the text transcriptions but also the
localization of such text within the images. Synthetic data
is often used to train those systems as a means for reducing
the cost of human labeling, e.g. [2], [5].

The main motivation of our work is to bypass any
implicit segmentation step, and propose a reading system
that given an image directly outputs its contained text. Our
research hypothesis is that convolutional neural networks
(CNNs) could be trained to automatically read in such
an end-to-end manner. During the training phase, full
images and the corresponding text transcription would be

Figure 1. Examples of utility meters. Public domain images similar to
the ones in our private dataset shown for illustrative purposes.

provided, without any indication on where on the image
the text appears.

In order to validate such an hypothesis, in this paper
we focus on the specific case of reading utility meters
from camera acquired images. We can see some examples
of the type of images in Figure 1. The scenario we take
as a proof of concept might initially appear simple, since
we are just dealing with a 10-digit alphabet. However, the
problem still shows the same challenges that we usually
encounter when reading text in natural images. Text may
appear in any location, with different size and fonts,
different lengths, while artifacts such as dirt, illumination
highlights, blur, etc. are common. In addition, in such
an application scenario, spotting approaches (e.g. [3])
guided by a predefined dictionary of words to read are not
suitable, as the task is inherently an ”open dictionary” one
over the set of possible digits. So, in this case, we do not
take advantage of any language model nor predefined set
of words to read, although obviously the different possible
readings are finite.

A. Related Work

Reading text in natural images is a hot research topic
with an increasing interest by the community in recent
years. End-to-end scene text recognition pipelines are
commonly based in a two-stage approach, first applying
a text localization algorithm to the input image and then
recognizing the text present in the cropped bounding boxes
provided by the detector. In the localization stage the
dominant trend nowadays is on using CNN based detec-
tors [6], [7], [8], that have replaced traditional methods
based on connected components analysis [9], [10], [11].
Scene text recognition from pre-segmented text has been
approached in two different conditions: using a small
provided lexicon per image (also known as the word
spotting task) [12], [13], or performing unconstrained
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Figure 2. Our proposed architecture. Seven blocks composed of a 3x3 convolutional layer with ReLU activations, a 2x2 max pooling layer and a
LRN layer. The number of convolutional filters is doubled at every block. A final step of five fully connected layers with softmax produce probability
distributions over the 11 possible classes.

text recognition, i.e. allowing the recognition of out-of-
dictionary words[14], [15]. True segmentation-free end-
to-end approaches to date are limited to the interpretation
of street signs [16],[17], where a canonical transcription
of the street sign contents is sought. In [16] the problem is
tackled through an LSTM based architecture, while in [17]
attention models are employed in the same problem.

In the specific case of reading images of utility meters,
different systems have been proposed in the literature,
all of them following the paradigm of first detecting the
meter reading zone, then segmenting individual digits
and a later recognition problem. Reading zones are seg-
mented by either using adaptive thresholding and math-
ematical morphology operations [18], [19] or by using
supervised trained detectors such as multilayer percep-
trons (MLP) [20], [21] or Haar cascades [22]. The later
segmentation of digits has been performed by projection
profiles [23], connected component analysis [18] or the
MSER operator [24]. Finally, the digit classification step
has been addressed by the use of Histogram of Gradients
(HOG) features and Support Vector Machines (SVM)
classifiers [24], CNNs [19], MLPs [25] or by directly using
off the shelf OCR tools like Tesseract [19]. No public
datasets have been made available in any of the previous
works, respecting the privacy of the consumers, while no
code is available.

In this paper we propose to avoid a two-stage pipeline of
segmentation followed by recognition, and propose instead
an end-to-end system that directly outputs the text in the
scene in a segmentation-free manner. Moreover, we show
that the resulting system is capable to detect the right
length for the image string and to filter any non-significant
digits, without any explicit training.

The rest of the paper is organized as follows. Section II
presents the proposed methodology for the end-to-end
convolutional neural network that is able to read text with-
out any explicit segmentation step. Section III provides
the implementation details of the proposed network and
training procedures. Section IV presents the experimental
results that were obtained while conclusions are drawn in
Section V.

II. ARCHITECTURE

A. Reading Utility Meters

Our model for reading utility meters is based on a single
neural network that takes as input a meter image and is
capable of producing the actual meter reading as output.
It is important to notice that utility meters have different
measurement’s lengths, depending on the model. In our
case, we assume that all meters have 4 or 5 significant
digits. As shown in Figure 3, these digits are always
followed by a set of non-significant digits, the decimal
part of the reading that normally is not taken into account
when billing the service and therefore is not relevant
for the automatic meter reading. The separation between
significant and non-significant digits has been traditionally
tackled using color features [22], [21], [24], in our case
the idea is that the network itself must learn both to ignore
them and to find the correct measurement length.

Figure 3. Utility meters may have different reading lengths depending
on the model. This particular model has 5 significant digits followed by
three non-significant digits (in red) that correspond to the decimal part
of the reading. The ground-truth data for this image would be the string
“01971”. Image source: Wikimedia Commons CC-BY-SA-3.0.

B. Proposed Method

We implement our model as a convolutional neural net-
work that predicts each of the output digits simultaneously.
The architecture of our network is shown in figure 2. It is
observed that it is composed of a convolutional backbone



of seven blocks, each composed of a convolutional layer
with Rectified Linear Units (ReLU) activations, a max
pooling layer (except on conv7), and a local response
normalization (LRN) layer. The number of convolutional
filters is doubled at every block (starting from 16 at conv1
layer up to 1024 at conv7 layer) and the kernel size is
3×3 in all layers. All pooling layers use a kernel of 2×2
and a stride of 2. After the convolutional part we stack
five independent fully connected layers, each one with a
Softmax layer producing a probability distribution over
the 11 possible classes (10 digits + 1 no-symbol class) for
each significant digit of the final reading. The five outputs
of the network are then treated as a typical classification
output and trained using the Cross-Entropy loss function:

L =
−1
N

N∑
n=1

log(p̂n,ln) (1)

where N is the batch size, p̂n is the prediction vector, and
ln ∈ [0, 1, 2, ...,K − 1] is the correct class label among
the K classes for the n’th sample.

Intuitively for the network being able to read in an
end-to-end manner it has to take into account global
information extracted over the entire image to make the
individual digit predictions. The initial convolutional lay-
ers extract visual features of the whole image, while the
fully connected layers specialize in predicting the output
probabilities for each digit.

This end-to-end model has several benefits over tradi-
tional methods of robust reading. First, the network can
be trained with full images, without any explicit seg-
mentation, and directly optimizes the end-to-end reading
performance. Second, the particular design of the network
allows for real time reading speeds while achieving high
reading accuracy.

III. IMPLEMENTATION DETAILS

We have implemented the end-to-end reading model
using the Caffe [26] deep learning framework. We have
trained the network from scratch using the RMSProp1

optimizer for 500, 000 iterations with a batch size of 16
and an initial learning rate of 0.0001 that is decreased one
order of magnitude every 50, 000 iterations. At training
time we resize the input images to 512×512, subtract the
train set mean, and do random crops of 483 × 483 as a
data augmentation strategy. Figure 4 shows the evolution
of the sum of the five losses over time. We appreciate how
the network converges after 400, 000 iterations.

IV. EXPERIMENTS

A. Dataset and Evaluation Protocol

In order to train and test the proposed reading system,
we have used a private dataset of images of utility meters
captured with mobile devices. Meter images are collected
in real life by non-expert users, and therefore reflect real-
life statistics. The dataset has a total of 222, 198 images of

1http://www.cs.toronto.edu/∼tijmen/csc321/slides/lecture slides
lec6.pdf

Figure 4. Training loss of our convolutional neural network over time.

utility meters from 13 different manufacturers comprising
47 different models of meters. Train and test splits were
conducted in a stratified fashion looking at the meter
model metadata, in order to ensure a correct balance. We
ended with 177, 758 images being used during training
while 44, 440 were kept for testing.

In order to evaluate the performance of the proposed
system, we will compute its accuracy by counting in how
many of the test images we obtain a perfect reading. That
is, all the significant digits have been correctly read and
the non-significant ones have been ignored, c.f. Fig. 7.

B. Baseline: Classic Segmentation and Recognition
Pipeline

For the sake of completeness and in the light of the
unavailability of any state of the art implementation or
public dataset that would allow us a meaningful compari-
son to the state of the art, we have implemented a classic
pipeline comprising separate segmentation and digit recog-
nition stages. Apart from providing an indicative level of
performance to compare against, this exercise has provided
us with insight on the kind of limitations that such two-
stage architectures present.

For the baseline pipeline and given the nature of the
application, we have opted to implement an ad-hoc seg-
mentation strategy rather than a generic text localizer.
Following the published state of the art [22], [24], we have
trained two Haar cascades [27]. The first Haar cascade
deals with the detection of the reading zones of the
meters and the second one is applied afterwards for the
segmentation of the digits within the reading zone. We
can see an example of the baseline segmentation results
in Figure 5.

For the recognition stage, we have implemented two
alternatives, on one hand an SVM digit classifier based
on HOG features and on the other hand a LeNet based
digit classifier CNN.

On our test dataset, if we just evaluate the individual
digit recognizers by feeding the SVM or CNN the ground-
truthed segmented digits, both recognizers yield individual
digit recognition rates of around 95%. However, when
evaluating the end-to-end task by using a two-stage ap-
proach, the performance is dramatically dropped to around
54%. Such a drop clearly indicates on one hand how
segmentation errors are propagated and clearly affect the
overall performance. On the other hand, it shows that
recognition errors seem to be uniformly distributed in the
meter images, i.e. a single digit error in a reading would



Figure 5. Example of the reading zone and digit segmentation obtained
with Haar cascades.

translate to an end-to-end level error. These results are not
meant to substitute state of the art, but are good indicators
obtained of a pipeline reflecting the state of the art, in the
same conditions as our system.

C. Results

The proposed system achieves an overall end-to-end
recognition accuracy of 94.167% on the test set. This
means that our CNN model was able to correctly read
all significant digits, automatically filtering any non-
significant ones, in 41, 848 of the 44, 440 test images. This
represents a significant improvement of 40% compared
to the baseline pipeline. At the level of digit recognition,
the overall accuracy is 97.94%, while Table I shows the
recognition accuracies of individual digits on the test set.

Table I
CLASSIFICATION ACCURACY FOR INDIVIDUAL DIGITS’ PREDICTIONS.

1st 2nd 3rd 4th 5th

Accuracy 99.043 98.393 97.596 97.313 97.353

It is worth to notice at this point how the leftmost digits
are the ones with better accuracy. This is probably due to
the fact that rightmost digits change with more frequency
and thus are more prone to be captured in the position
between two numbers, while it can also be partially an
effect of the strong bias that leftmost digits exhibit. An
interesting side effect of such behavior is that the majority
of the errors being on the less significant digits means that
the average reading error in the particular utility meter
units (e.g. m3 of water) is made smaller.

In the following we list the most common problems
revealed by the error analysis done to our system’s test
outputs:

• Strong glare or blur are the most common sources
of errors. As illustrated in Figure 6 in most cases the
affected digits are hard to read even for humans.

• Small scale. Images captured from a long distance
pose difficulties for two reasons: (1) the numbers

become unreadable due to lack of resolution , while
at the same time (2) the network has not seen many
small-meter examples at training time.

• Severe perspective distortion. Although the network
shows a robust performance for “moderate” distor-
tions, it is not able to provide correct readings in
extreme cases.

• Capture errors. The images are captured by non-
expert users, who sometimes fail to include the full
reading area in the image or provide upside down
flipped images, causing the network to fail.

• Annotation errors. We have identified that approxi-
mately 10% of the errors correspond to images with
wrong annotations.

Figure 6. Examples of errors on individual digits affected by strong
glare or blur. From left to right (Predicted/Truth): 0/6, 0/9, 1/8, 5/3, 6/0,
8/2, 0/6.

The above list of errors should not lead one to think
that the rest of the images are good quality, controlled
captures. As a matter of fact, the proposed method is very
robust with reading meters in evidently complicated cases.
Figure 7 shows some examples of correct readings where
the performance of the algorithm is particularly robust.

The system’s processing time for a single image (using
a batch size of 1) is 31 ms. on a commodity GPU,
thus providing a frame rate of 32 fps. In a i7 CPU the
processing time rises to 1.19 seconds per image, still a
pretty decent time.

D. Analysis of spatial context sensitivity

An exceptional outcome about the proposed method is
not that the CNN is able to learn rich visual features for
digit classification, but that it learns how to infer which
is the correct digit to look at in order to make correct
predictions in each of its independent outputs. Intuitively,
to do so the network has to learn how to use contextual
cues around the particular digits’ locations.

In order to investigate from which parts of the image a
certain classification prediction is coming from, we make
use of the occlusion sensitivity visualization technique
proposed by Zeiler and Fergus in [28]. For this we
iteratively set a 32 × 32 square patch of the image to
be all zero with a sliding window, and then look at how
this occlusion affects the probability of the true class in
each of the classifiers. Figure 8 shows a visualization of
the five outputs’ probabilities as a function of the occluder
position for two given test images as 2-dimensional heat
maps.

This example demonstrates that the model is not only
localizing the digits within the scene, as the probability
of the correct class drops significantly when the corre-
sponding digit is occluded, but also that the surrounding
area of the digit has a critical contribution to the network
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Figure 7. Examples of correct readings in complicated cases. We show
a cropped version of the reading area for visualization purposes and to
conceal private meter information. The full input images are similar to
the ones shown in Figures 1, 2, and 3.

predictions. In particular, we see how the four leftmost
digits predictions are pretty sensitive to the left edge of
the meter’s reading area, while the predictions for the last
two digits have a more sensible area at their right side,
presumably because they have to figure out where is the
significant/non-significant digits’ boundary.

V. CONCLUSIONS

In this work we explored the possibility to perform true,
segmentation-free, end-to-end reading in images, with a
particular application to reading utility meters in natural
scene images. The proposed CNN architecture can be
trained in an end-to-end manner, and is able to directly

output readings without any explicit text localization step,
while it inherently learns to filter out non-significant digits
present on the meter. The obtained results in a large
dataset of images acquired by different users and devices
demonstrate that the proposed system is able to correctly
read the meter’s measurements with high accuracy in real-
time. Further analysis, reveal that such architectures are
capable of not only implicitly localise areas of interest for
each digit, but efficiently use the contextual information
available.

We plan to extend this work in the future with more
aggressive data augmentation strategies in order to cope
with small meters, severe perspective distortion, and large
translation variance. We also consider adding an object-
ness score output to the network so it can learn when
a meter is present and well centered in the input image,
providing thus a rejection option to the system.
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