|
Jordi Vitria and 6 others. 1999. Real time recognition of pharmaceutical products by subspace methods.
|
|
|
Jon Almazan, Lluis Gomez, Suman Ghosh, Ernest Valveny and Dimosthenis Karatzas. 2020. WATTS: A common representation of word images and strings using embedded attributes for text recognition and retrieval. In Analysis”, K.A. and C.V. Jawahar, eds. Visual Text Interpretation – Algorithms and Applications in Scene Understanding and Document Analysis. Springer. (Series on Advances in Computer Vision and Pattern Recognition.)
|
|
|
Jon Almazan, Ernest Valveny and Alicia Fornes. 2011. Deforming the Blurred Shape Model for Shape Description and Recognition. In Jordi Vitria, Joao Miguel Raposo and Mario Hernandez, eds. 5th Iberian Conference on Pattern Recognition and Image Analysis. Berlin, Springer-Verlag, 1–8. (LNCS.)
Abstract: This paper presents a new model for the description and recognition of distorted shapes, where the image is represented by a pixel density distribution based on the Blurred Shape Model combined with a non-linear image deformation model. This leads to an adaptive structure able to capture elastic deformations in shapes. This method has been evaluated using thee different datasets where deformations are present, showing the robustness and good performance of the new model. Moreover, we show that incorporating deformation and flexibility, the new model outperforms the BSM approach when classifying shapes with high variability of appearance.
|
|
|
Jon Almazan, David Fernandez, Alicia Fornes, Josep Llados and Ernest Valveny. 2012. A Coarse-to-Fine Approach for Handwritten Word Spotting in Large Scale Historical Documents Collection. 13th International Conference on Frontiers in Handwriting Recognition.453–458.
Abstract: In this paper we propose an approach for word spotting in handwritten document images. We state the problem from a focused retrieval perspective, i.e. locating instances of a query word in a large scale dataset of digitized manuscripts. We combine two approaches, namely one based on word segmentation and another one segmentation-free. The first approach uses a hashing strategy to coarsely prune word images that are unlikely to be instances of the query word. This process is fast but has a low precision due to the errors introduced in the segmentation step. The regions containing candidate words are sent to the second process based on a state of the art technique from the visual object detection field. This discriminative model represents the appearance of the query word and computes a similarity score. In this way we propose a coarse-to-fine approach achieving a compromise between efficiency and accuracy. The validation of the model is shown using a collection of old handwritten manuscripts. We appreciate a substantial improvement in terms of precision regarding the previous proposed method with a low computational cost increase.
|
|
|
Jon Almazan, Alicia Fornes and Ernest Valveny. 2011. A Non-Rigid Feature Extraction Method for Shape Recognition. 11th International Conference on Document Analysis and Recognition.987–991.
Abstract: This paper presents a methodology for shape recognition that focuses on dealing with the difficult problem of large deformations. The proposed methodology consists in a novel feature extraction technique, which uses a non-rigid representation adaptable to the shape. This technique employs a deformable grid based on the computation of geometrical centroids that follows a region partitioning algorithm. Then, a feature vector is extracted by computing pixel density measures around these geometrical centroids. The result is a shape descriptor that adapts its representation to the given shape and encodes the pixel density distribution. The validity of the method when dealing with large deformations has been experimentally shown over datasets composed of handwritten shapes. It has been applied to signature verification and shape recognition tasks demonstrating high accuracy and low computational cost.
|
|
|
Jon Almazan, Alicia Fornes and Ernest Valveny. 2013. A Deformable HOG-based Shape Descriptor. 12th International Conference on Document Analysis and Recognition.1022–1026.
Abstract: In this paper we deal with the problem of recognizing handwritten shapes. We present a new deformable feature extraction method that adapts to the shape to be described, dealing in this way with the variability introduced in the handwriting domain. It consists in a selection of the regions that best define the shape to be described, followed by the computation of histograms of oriented gradients-based features over these points. Our results significantly outperform other descriptors in the literature for the task of hand-drawn shape recognition and handwritten word retrieval
|
|
|
Jon Almazan, Albert Gordo, Alicia Fornes and Ernest Valveny. 2013. Handwritten Word Spotting with Corrected Attributes. 15th IEEE International Conference on Computer Vision.1017–1024.
Abstract: We propose an approach to multi-writer word spotting, where the goal is to find a query word in a dataset comprised of document images. We propose an attributes-based approach that leads to a low-dimensional, fixed-length representation of the word images that is fast to compute and, especially, fast to compare. This approach naturally leads to an unified representation of word images and strings, which seamlessly allows one to indistinctly perform query-by-example, where the query is an image, and query-by-string, where the query is a string. We also propose a calibration scheme to correct the attributes scores based on Canonical Correlation Analysis that greatly improves the results on a challenging dataset. We test our approach on two public datasets showing state-of-the-art results.
|
|
|
Jon Almazan, Albert Gordo, Alicia Fornes and Ernest Valveny. 2012. Efficient Exemplar Word Spotting. 23rd British Machine Vision Conference.67.1–67.11.
Abstract: In this paper we propose an unsupervised segmentation-free method for word spotting in document images.
Documents are represented with a grid of HOG descriptors, and a sliding window approach is used to locate the document regions that are most similar to the query. We use the exemplar SVM framework to produce a better representation of the query in an unsupervised way. Finally, the document descriptors are precomputed and compressed with Product Quantization. This offers two advantages: first, a large number of documents can be kept in RAM memory at the same time. Second, the sliding window becomes significantly faster since distances between quantized HOG descriptors can be precomputed. Our results significantly outperform other segmentation-free methods in the literature, both in accuracy and in speed and memory usage.
|
|
|
Jon Almazan, Albert Gordo, Alicia Fornes and Ernest Valveny. 2014. Word Spotting and Recognition with Embedded Attributes. TPAMI, 36(12), 2552–2566.
Abstract: This article addresses the problems of word spotting and word recognition on images. In word spotting, the goal is to find all instances of a query word in a dataset of images. In recognition, the goal is to recognize the content of the word image, usually aided by a dictionary or lexicon. We describe an approach in which both word images and text strings are embedded in a common vectorial subspace. This is achieved by a combination of label embedding and attributes learning, and a common subspace regression. In this subspace, images and strings that represent the same word are close together, allowing one to cast recognition and retrieval tasks as a nearest neighbor problem. Contrary to most other existing methods, our representation has a fixed length, is low dimensional, and is very fast to compute and, especially, to compare. We test our approach on four public datasets of both handwritten documents and natural images showing results comparable or better than the state-of-the-art on spotting and recognition tasks.
|
|
|
Jon Almazan, Albert Gordo, Alicia Fornes and Ernest Valveny. 2014. Segmentation-free Word Spotting with Exemplar SVMs. PR, 47(12), 3967–3978.
Abstract: In this paper we propose an unsupervised segmentation-free method for word spotting in document images. Documents are represented with a grid of HOG descriptors, and a sliding-window approach is used to locate the document regions that are most similar to the query. We use the Exemplar SVM framework to produce a better representation of the query in an unsupervised way. Then, we use a more discriminative representation based on Fisher Vector to rerank the best regions retrieved, and the most promising ones are used to expand the Exemplar SVM training set and improve the query representation. Finally, the document descriptors are precomputed and compressed with Product Quantization. This offers two advantages: first, a large number of documents can be kept in RAM memory at the same time. Second, the sliding window becomes significantly faster since distances between quantized HOG descriptors can be precomputed. Our results significantly outperform other segmentation-free methods in the literature, both in accuracy and in speed and memory usage.
Keywords: Word spotting; Segmentation-free; Unsupervised learning; Reranking; Query expansion; Compression
|
|