toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Jon Almazan; Alicia Fornes; Ernest Valveny edit  url
doi  isbn
openurl 
  Title A Non-Rigid Feature Extraction Method for Shape Recognition Type Conference Article
  Year 2011 Publication 11th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 987-991  
  Keywords  
  Abstract This paper presents a methodology for shape recognition that focuses on dealing with the difficult problem of large deformations. The proposed methodology consists in a novel feature extraction technique, which uses a non-rigid representation adaptable to the shape. This technique employs a deformable grid based on the computation of geometrical centroids that follows a region partitioning algorithm. Then, a feature vector is extracted by computing pixel density measures around these geometrical centroids. The result is a shape descriptor that adapts its representation to the given shape and encodes the pixel density distribution. The validity of the method when dealing with large deformations has been experimentally shown over datasets composed of handwritten shapes. It has been applied to signature verification and shape recognition tasks demonstrating high accuracy and low computational cost.  
  Address Beijing; China; September 2011  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-7695-4520-2 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ AFV2011 Serial 1763  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: