|
Mireia Sole, Joan Blanco, Debora Gil, G. Fonseka, Richard Frodsham, Oliver Valero, et al. (2017). "Is there a pattern of Chromosome territoriality along mice spermatogenesis? " In 3rd Spanish MeioNet Meeting Abstract Book (pp. 55–56).
|
|
|
Jose Yauri, Aura Hernandez-Sabate, Pau Folch, & Debora Gil. (2021). "Mental Workload Detection Based on EEG Analysis " In Artificial Intelligent Research and Development. Proceedings 23rd International Conference of the Catalan Association for Artificial Intelligence. (Vol. 339, pp. 268–277).
Abstract: The study of mental workload becomes essential for human work efficiency, health conditions and to avoid accidents, since workload compromises both performance and awareness. Although workload has been widely studied using several physiological measures, minimising the sensor network as much as possible remains both a challenge and a requirement.
Electroencephalogram (EEG) signals have shown a high correlation to specific cognitive and mental states like workload. However, there is not enough evidence in the literature to validate how well models generalize in case of new subjects performing tasks of a workload similar to the ones included during model’s training.
In this paper we propose a binary neural network to classify EEG features across different mental workloads. Two workloads, low and medium, are induced using two variants of the N-Back Test. The proposed model was validated in a dataset collected from 16 subjects and shown a high level of generalization capability: model reported an average recall of 81.81% in a leave-one-out subject evaluation.
Keywords: Cognitive states; Mental workload; EEG analysis; Neural Networks.
|
|
|
Marta Ligero, Guillermo Torres, Carles Sanchez, Katerine Diaz, Raquel Perez, & Debora Gil. (2019). "Selection of Radiomics Features based on their Reproducibility " In 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 403–408).
Abstract: Dimensionality reduction is key to alleviate machine learning artifacts in clinical applications with Small Sample Size (SSS) unbalanced datasets. Existing methods rely on either the probabilistic distribution of training data or the discriminant power of the reduced space, disregarding the impact of repeatability and uncertainty in features.In the present study is proposed the use of reproducibility of radiomics features to select features with high inter-class correlation coefficient (ICC). The reproducibility includes the variability introduced in the image acquisition, like medical scans acquisition parameters and convolution kernels, that affects intensity-based features and tumor annotations made by physicians, that influences morphological descriptors of the lesion.For the reproducibility of radiomics features three studies were conducted on cases collected at Vall Hebron Oncology Institute (VHIO) on responders to oncology treatment. The studies focused on the variability due to the convolution kernel, image acquisition parameters, and the inter-observer lesion identification. The features selected were those features with a ICC higher than 0.7 in the three studies.The selected features based on reproducibility were evaluated for lesion malignancy classification using a different database. Results show better performance compared to several state-of-the-art methods including Principal Component Analysis (PCA), Kernel Discriminant Analysis via QR decomposition (KDAQR), LASSO, and an own built Convolutional Neural Network.
|
|
|
Debora Gil, & Guillermo Torres. (2020). "A multi-shape loss function with adaptive class balancing for the segmentation of lung structures " In 34th International Congress and Exhibition on Computer Assisted Radiology & Surgery.
|
|
|
Mireia Sole, Joan Blanco, Debora Gil, G. Fonseka, Richard Frodsham, Oliver Valero, et al. (2017)." Unraveling the enigmas of chromosome territoriality during spermatogenesis" In IX Jornada del Departament de Biologia Cel•lular, Fisiologia i Immunologia.
|
|
|
Carles Sanchez, Miguel Viñas, Coen Antens, Agnes Borras, & Debora Gil. (2018). "Back to Front Architecture for Diagnosis as a Service " In 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (pp. 343–346).
Abstract: Software as a Service (SaaS) is a cloud computing model in which a provider hosts applications in a server that customers use via internet. Since SaaS does not require to install applications on customers' own computers, it allows the use by multiple users of highly specialized software without extra expenses for hardware acquisition or licensing. A SaaS tailored for clinical needs not only would alleviate licensing costs, but also would facilitate easy access to new methods for diagnosis assistance. This paper presents a SaaS client-server architecture for Diagnosis as a Service (DaaS). The server is based on docker technology in order to allow execution of softwares implemented in different languages with the highest portability and scalability. The client is a content management system allowing the design of websites with multimedia content and interactive visualization of results allowing user editing. We explain a usage case that uses our DaaS as crowdsourcing platform in a multicentric pilot study carried out to evaluate the clinical benefits of a software for assessment of central airway obstruction.
|
|
|
Esmitt Ramirez, Carles Sanchez, & Debora Gil. (2019). "Localizing Pulmonary Lesions Using Fuzzy Deep Learning " In 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (pp. 290–294).
Abstract: The usage of medical images is part of the clinical daily in several healthcare centers around the world. Particularly, Computer Tomography (CT) images are an important key in the early detection of suspicious lung lesions. The CT image exploration allows the detection of lung lesions before any invasive procedure (e.g. bronchoscopy, biopsy). The effective localization of lesions is performed using different image processing and computer vision techniques. Lately, the usage of deep learning models into medical imaging from detection to prediction shown that is a powerful tool for Computer-aided software. In this paper, we present an approach to localize pulmonary lung lesion using fuzzy deep learning. Our approach uses a simple convolutional neural network based using the LIDC-IDRI dataset. Each image is divided into patches associated a probability vector (fuzzy) according their belonging to anatomical structures on a CT. We showcase our approach as part of a full CAD system to exploration, planning, guiding and detection of pulmonary lesions.
|
|
|
Aura Hernandez-Sabate, Debora Gil, David Roche, Monica M. S. Matsumoto, & Sergio S. Furuie. (2011). "Inferring the Performance of Medical Imaging Algorithms " In Pedro Real, Daniel Diaz-Pernil, Helena Molina-Abril, Ainhoa Berciano, & Walter Kropatsch (Eds.), 14th International Conference on Computer Analysis of Images and Patterns (Vol. 6854, pp. 520–528). L. Berlin: Springer-Verlag Berlin Heidelberg.
Abstract: Evaluation of the performance and limitations of medical imaging algorithms is essential to estimate their impact in social, economic or clinical aspects. However, validation of medical imaging techniques is a challenging task due to the variety of imaging and clinical problems involved, as well as, the difficulties for systematically extracting a reliable solely ground truth. Although specific validation protocols are reported in any medical imaging paper, there are still two major concerns: definition of standardized methodologies transversal to all problems and generalization of conclusions to the whole clinical data set.
We claim that both issues would be fully solved if we had a statistical model relating ground truth and the output of computational imaging techniques. Such a statistical model could conclude to what extent the algorithm behaves like the ground truth from the analysis of a sampling of the validation data set. We present a statistical inference framework reporting the agreement and describing the relationship of two quantities. We show its transversality by applying it to validation of two different tasks: contour segmentation and landmark correspondence.
Keywords: Validation, Statistical Inference, Medical Imaging Algorithms.
|
|
|
Patricia Marquez, Debora Gil, & Aura Hernandez-Sabate. (2011). "A Confidence Measure for Assessing Optical Flow Accuracy in the Absence of Ground Truth " In IEEE International Conference on Computer Vision – Workshops (pp. 2042–2049). Barcelona (Spain): IEEE.
Abstract: Optical flow is a valuable tool for motion analysis in autonomous navigation systems. A reliable application requires determining the accuracy of the computed optical flow. This is a main challenge given the absence of ground truth in real world sequences. This paper introduces a measure of optical flow accuracy for Lucas-Kanade based flows in terms of the numerical stability of the data-term. We call this measure optical flow condition number. A statistical analysis over ground-truth data show a good statistical correlation between the condition number and optical flow error. Experiments on driving sequences illustrate its potential for autonomous navigation systems.
Keywords: IEEE International Conference on Computer Vision – Workshops
|
|
|
Patricia Marquez, Debora Gil, & Aura Hernandez-Sabate. (2013). "Evaluation of the Capabilities of Confidence Measures for Assessing Optical Flow Quality " In ICCV Workshop on Computer Vision in Vehicle Technology: From Earth to Mars (pp. 624–631).
Abstract: Assessing Optical Flow (OF) quality is essential for its further use in reliable decision support systems. The absence of ground truth in such situations leads to the computation of OF Confidence Measures (CM) obtained from either input or output data. A fair comparison across the capabilities of the different CM for bounding OF error is required in order to choose the best OF-CM pair for discarding points where OF computation is not reliable. This paper presents a statistical probabilistic framework for assessing the quality of a given CM. Our quality measure is given in terms of the percentage of pixels whose OF error bound can not be determined by CM values. We also provide statistical tools for the computation of CM values that ensures a given accuracy of the flow field.
|
|