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Abstract—Assistance systems for e-Health applications have
some specific requirements that demand of new methods for data
gathering, analysis and modeling able to deal with SmallData:
1) systems should dynamically collect data from, both, the
environment and the user to issue personalized recommendations;
2) data analysis should be able to tackle a limited number
of samples prone to include non-informative data and possibly
evolving in time due to changes in patient condition; 3) algorithms
should run in real time with possibly limited computational
resources and fluctuant internet access.

Electronic medical devices (and CyberPhysical devices in
general) can enhance the process of data gathering and analysis in
several ways: (i) acquiring simultaneously multiple sensors data
instead of single magnitudes (ii) filtering data; (iii) providing
real-time implementations condition by isolating tasks in indi-
vidual processors of multiprocessors Systems-on-chip (MPSoC)
platforms and (iv) combining information through sensor fusion
techniques.

Our approach focus on both aspects of the complementary role
of CyberPhysical devices and analysis of SmallData in the process
of personalized models building for e-Health applications. In
particular, we will address the design of Cyber-Physical Systems
in Health for Personalized Assistance (CyberHealth) in two
specific application cases: 1) A Smart Assisted Driving System
(SADs) for dynamical assessment of the driving capabilities
of Mild Cognitive Impaired (MCI) people; 2) An Intelligent
Operating Room (iOR) for improving the yield of bronchoscopic
interventions for in-vivo lung cancer diagnosis.

I. INTRODUCTION

Assistance systems for e-Health include different scenarios,
among which this proposal focuses in two of them: assisted
living and support to intervention and diagnosis. In the first
case, the system should be able to provide personalized
assistance in daily tasks to improve everyday life of elder
and/or impaired people. In the second case, operating rooms
should be equipped with intelligent systems supporting inter-
vention guidance and final diagnosis without altering standard
protocols. In any case, there are some specific requirements
that are determinant for setting the optimal techniques and
algorithms:

Acquisition of Multimodal Data. To issue personalized
recommendations and actions, the system should be able to
dynamically collect multimodal data from both, the user and
its environment.

SmallData for Models Design. Since data is collected from
individual patients, Health applications must deal with data
samples limited to a small number of cases and possible biased
backgrounds. This experimental setting is challenging for data
analysis methods designed to deal with BigData, characterized
by a huge amount of information.

Data Dynamics. Methods for data analysis and modelling
should be able to tackle with changes in patient condition
due to its disease evolution and unexpected events during
intervention (short) time or life activities (longer periods).
These might introduce dynamic changes in the input data
features that require personalized predictive models as well
as discarding non-informative data that might negatively in-
fluence predictions.

Intra-class Variability. Aside non-relevant and noisy data,
the variability of patient physiological data (at low and high
level) is bounded compared to BigData problems where intra-
class variability is prone to be high. This restriction in intra-
class variability favors the performance of predictions and
could help to compensate for the low number of available
samples.

Real-Time Data Processing. Algorithms should run in hard
real time conditions with possibly limited computational re-
sources and fluctuant internet access inside operating rooms or
on the road, for instance. Since they require of a continuous
monitoring at maximum computation speed, this suggests
systems independent of internet connection.

We propose to map the algorithms tailored for personalized
recommendations and actions in real-time embedded systems
processing the dynamically collected data from user interac-
tions and multi-modal sensors. Such Cyber-Physical Systems
could be applied to two specific application scenarios:

1) A Smart Assisted Driving System for dynamical as-
sessment of the driving capabilities of Mild Cognitive
Impaired people.

2) An Intelligent Operating Room for in-vivo lung cancer
diagnosis using bronchoscopic interventions.



II. STATE-OF-ART

A. Intelligent Operating Room for in-vivo Lung Cancer Diag-
nosis

Lung cancer is both the most frequently diagnosed cancer
and cause of cancer death [1]. The Lung Cancer Screening
Trial showed that screening a risk population using computed
tomography (CT) reduced mortality by 20%. However, CT
is not sufficient and pathological confirmation of lung cancer
is always needed. Transthoracic needle aspiration and bron-
choscopy include the procedures available for tissue sampling.
Since bronchoscopy is a minimally invasive safe procedure
able to reach most pulmonary areas, it is the gold-standard
for lung cancer diagnosis. A main limitation of bronchoscopy
is the difficulty to reach peripheral lesions what decreases
diagnostic yield to 63.7% [2]. Diagnostic yield could be
improved by developing integrative multi-modality diagnostic
systems able to guide the bronchoscopist to the lesion and
assess in-vivo its malignancy.

Standard protocols for intervention guidance relying on
fluoroscopy have a diagnostic yield around 40%, last 20 min
per intervention and require 5-10 min of repetitive patient
and medical staff radiation [3]. Existing alternatives like
image based systems (LungPoint, NAVI) or electromagnetic
navigation (inReachTM, SPinDrive R©) are far from meeting
clinician expectations. Electromagnetic systems [4] might not
be accurate enough [5] and require specific expensive gadgets
that alter the operating protocol. Image systems based on
multi-modal registration require manual intra-operative adjust-
ments of the guidance system [6]. An alternative to registration
is to use anatomical landmarks describing the bronchial tree
anatomy for CT-video registration [7]. Although first results
show the feasibility of such a matching, identification and
matching of bronchial anatomy might be distorted in the pres-
ence of unexpected sudden movements during intervention.

The current state of guidance technologies suggests a hybrid
system combining video analysis with positional information
collected from other sensors [8]. An alternative to electro-
magnetic guidance could be the use of positioning micro-
sensors introduced inside the scope working channel. There are
affordable commercial devices [9], [10] allowing connection to
specific multiprocessor architectures for real time processing
inside the operating room.

Concerning techniques for in-vivo diagnosis, Confocal
Laser Endomicroscopy (CLE) is an emerging imaging tech-
nique that allows the in-vivo acquisition of cell patterns of
potentially malignant lesions [11]. Up to now, CLE has been
mainly used in gastrointestinal endoscopy and its use in
bronchoscopy mainly reduces to clinical studies reporting the
visual appearance of cellular patterns. A very recent study
[11] indicates that CLE images could contain enough visual
information to discriminate between inflammatory and can-
cerous patterns using non-supervised graph structural analysis
to tackle with the low number of samples. Since samples
should be previously filtered to minimize the impact of non-
informative noisy images in predictions, we consider that for

an accurate in-vivo biopsy, CLE analysis could be comple-
mented with protein assays delivered through micro-sensors.
Registering other significant biomedical data such as pH (to
monitor nerve activity or ionic reactions in the body) are
also being more popularly implemented using miniaturized
biocompatible flexible substrates and even graphene transistors
using the so called printed electronic technologies [12] that
are successfully being applied to biological fluids [13], [14]
or tissues [15] that can be integrated with wiring [16] and
circuitry [17], even in our UAB campus so that they can be
used in our application demonstrator.

We conclude that a hybrid system combining image and
micro-sensors would be clinically feasible for in-vivo broncho-
scopic diagnosis of lung cancer. In particular, such a system
for in-vivo diagnosis should include:

1) A hybrid guidance system combining video processing
with positional information collected by micro-sensors
deployed inside the working channel

2) Multi-sensor exploration of tissue using, both, analysis
of cellular patterns in CLE and cancer biomarkers col-
lected using micro-sensors.

3) Use FPGAs, GPUs and embedded technologies to ac-
celerate computations enough to issue a system able to
run in intervention time

B. Driving Systems for Evaluating Cognitive Impaired People

Progression of neurodegenerative diseases, such as
Alzheimer or Parkinson, decrease driving capabilities, as a
result of the decline in cognitive and visual abilities [18].
Even at early stages, called Mild Cognitive Impairment
(MCI), their performance is worse than cognitively healthy
people [19] and, thus, road safety [20] might decrease if MCI
patients keep on driving. However, driving cessation appears
to contribute to a variety of health problems, including
depression and increase in patient dependence [21]. A Smart
Assisted Driving System able to identify impairments of MCI
patients for driving and issue personalized recommendations
would significantly contribute to safely extend the driving
time of patients without losing comfort and without increasing
the risk for the rest of the population.

Current screening tools for driving assessment do not give
consistent cognitive predictors and reported driving outcomes
in [22] MCI patients. Indeed, previous experiences with MCI
patients [23] suggest that existing screening tools provide
very generic indicators not dynamically collected at driving
time which might not be able to each characterize drivers’
performance. We propose to monitor the patient at driving
time to dynamically determine his/her current deficiencies in
order to design a driving assistance system personalized to
driver’s particular skills and disease evolution.

The different cognitive functions associated to the ability to
drive, evolution in patient cognitive state and the variability
across driving skills suggests that patient monitoring should
collect multimodal data possibly including response to cog-
nitive tests, physical sensors (like impedance or heart rate
[24]), motor ability (especially impaired in elderly) and driving



behavioral patterns (like fatigue or stress). The evaluation of
these markers to find out indicators of the ability to drive of
a patient, as well as the validation of any assistance system
should be done in a safety environment. Thus, a simulator
able to both, evaluate driving capabilities and collect enough
data to compute a personalized model of the driver behavior
allowing the detection of any deviation should be necessary.

Commercially available simulators are expensive, bulky and
require specific hardware [25]. Other custom-made simulators
more focused on evaluating driving capabilities require high
computational complexity, and are intrusive, costly and energy
consumption [26]. Our experience suggests that a simulator
should be low-cost, easy-to-use and extendable with other non-
intrusive sensors able to detect driver abilities. Besides, em-
bedded low consumption devices can accelerate the algorithms
to work at real time.

The design of systems for assistance of patients with cogni-
tive impairments should identify the requirements and needs of
patients to ensure the highest acceptance among users. In this
context, results from user´s requirement analysis in [27] have
demonstrated that patients, caregivers and medical personnel
will accept the support from a robotic assistant in activities
of daily living for participants with mild cognitive impairment
and mild dementia due to Alzheimer’s disease, and will prefer
it to be the less bulky as possible for its functionalities
(shorter than the user and approximately chest height [28]).
Besides, wearable technologies (like accelerometers, textile
chairs, etc) can provide vital records or behavioral markers
coming from head, gaze, hands and feet and they should
evaluate driver emotional and mental states such as stress or
fatigue or attentional ability under specific events. We propose
to map their successful personalized risk index coming from
the medically supervised combination of key parameters that
monitor the state of the patients [29]. Therefore, it is expected
to have good acceptability among subjects with mild cognitive
impairment, and is feasible to evaluate behavioral state through
wearable technologies.

Moreover, before full autonomy of self-driving becomes a
reality, there will be intermediate autonomy levels (as defined
by SAE [30]) that will require to assess the capacity of the
driver to take over the control of the car when the car is
not able to do it, or, on the contrary, to keep it when the
driver is not able drive. By combining the driving ability
assessment with autonomous driving algorithms we could
provide a novel platform for development of a new breed of
algorithms focusing on intermediate levels of autonomy.

We conclude that to obtain usable SADs, the system should
avoid invasive gadgets and be based on behavioral visual anal-
ysis, wearable technologies and cognitive tests. In particular,
a system for assisting cognitive impaired people in driving
should:

1) Collect multimodal data from the patient including cog-
nitive tests, wearable sensors and driving behavioral
markers

2) Provide personalized assistance focusing on the partic-
ular lack of each driver.

3) Use FPGAs, GPUs and embedded technologies to ac-
celerate computations enough to issue a system able to
run during driving time

III. THE CYBER-HEALTH APPROACH

To guarantee an effective deployment in the Health care
system, methods for data analysis should be designed to
ensure an easy affordable acceleration. On one hand, GPU
computing [31], reconfigurable hardware [32], homogeneous
many-cores or asymmetric architectures [33] are some of the
”heterogeneous computing” (HC) approaches that can be used
to accelerate algorithms. On the other hand, convolutional
neural networks, CNNs, are very regular in structure and can
be mapped quite efficiently onto HC [34].

CYBERH proposes to develop methods for adapting CNNs
to analysis of homogeneous SmallData, as well as, tailor
the computing architectures that implement the SmallData
simplified analysis methods to allow portable devices with its
computation closer to sensors and actuators.

On one hand, SmallData problems in Health could be
efficiently managed with CNNs provided that the sample space
has been filtered. CYBERH will develop methods for data
analysis able to:

1) Dynamically discard influential and non-informative
data to prevent a bias in predictive models using un-
supervised structural analysis of data feature spaces.

2) Explore the potential of CNNs to define low level
features for a characterization of anatomical structures
easy to accelerate using specific hardware architectures.

3) Adapt CNNs architectures to SmallData with low intra-
class variability and homogeneous high-level contents
using hybrid data augmentation strategies combining
virtual data simulated from real cases with real samples.

On the other hand, embedded multi-processor platforms can
be an efficient cost-effective alternative to Cloud Computing.
CYBERH will develop implementation methods able to:

1) Map easier and more efficiently (in terms of energy,
space and cost) the algorithmic solutions developed into
ad-hoc platforms embedding custom computing when
dealing with application specific problems.

2) Map tasks into individual processors to better guarantee
the required hard real-time conditions

3) Better customize ad-hoc interfaces and communication
protocols in a flexible way adapting to new instrument
add-ons.

The methods developed will be applied to design a sim-
ulation platform for evaluation of driving assistance systems
for MIC people and a hybrid navigation system for in-vivo
bronchoscopic biopsy. In the first case, the goal will be to de-
sign a complete simulation platform to dynamically evaluate,
both, the driver’s current capabilities for secure driving and
the benefits of a personalized driving assistance system taking
into account both the cognitive abilities and (measurable)
physical state of the user/patient. Meanwhile, in the second
case the goal will be to develop a hybrid system combining



(a) Smart Assisted Driving System

(b) Integrative Multi-modality Diagnostic System
Fig. 1. Application systems approach schemes

video information with positioning micro-sensors for an in-
vivo diagnosis ideally based on confocal endomicroscopy and
biomarkers deployed by micro-sensors working together with
other sensors such as inertial and RF beacons. Figure ?? shows
the scheme for approaching both systems, the Smart Assisted
Driving System on fig.1(a), and the Integrative Multi-modality
Diagnostic System on fig.1(b).
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