|
Debora Gil, Petia Radeva, Jordi Saludes, & Josefina Mauri. (2000). "Automatic Segmentation of Artery Wall in Coronary IVUS Images: A Probabilistic Approach " In International Conference on Pattern Recognition (Vol. 4, pp. 352–355).
Abstract: Intravascular ultrasound images represent a unique tool to analyze the morphology of arteries and vessels (plaques, restenosis, etc). The poor quality of these images makes unsupervised segmentation based on traditional segmentation algorithms (such as edge or ridge/valley detection) fail to achieve the expected results. In this paper we present a probabilistic flexible template to separate different regions in the image. In particular, we use elliptic templates to model and detect the shape of the vessel inner wall in IVUS images. We present the results of successful segmentation obtained from patients undergoing stent treatment. A physician team has validated these results.
|
|
|
Carles Sanchez, Antonio Esteban Lansaque, Agnes Borras, Marta Diez-Ferrer, Antoni Rosell, & Debora Gil. (2017). "Towards a Videobronchoscopy Localization System from Airway Centre Tracking " In 12th International Conference on Computer Vision Theory and Applications (pp. 352–359).
Abstract: Bronchoscopists use fluoroscopy to guide flexible bronchoscopy to the lesion to be biopsied without any kind of incision. Being fluoroscopy an imaging technique based on X-rays, the risk of developmental problems and cancer is increased in those subjects exposed to its application, so minimizing radiation is crucial. Alternative guiding systems such as electromagnetic navigation require specific equipment, increase the cost of the clinical procedure and still require fluoroscopy. In this paper we propose an image based guiding system based on the extraction of airway centres from intra-operative videos. Such anatomical landmarks are matched to the airway centreline extracted from a pre-planned CT to indicate the best path to the nodule. We present a
feasibility study of our navigation system using simulated bronchoscopic videos and a multi-expert validation of landmarks extraction in 3 intra-operative ultrathin explorations.
Keywords: Video-bronchoscopy; Lung cancer diagnosis; Airway lumen detection; Region tracking; Guided bronchoscopy navigation
|
|
|
Patricia Marquez, Debora Gil, Aura Hernandez-Sabate, & Daniel Kondermann. (2013). "When Is A Confidence Measure Good Enough? " In 9th International Conference on Computer Vision Systems (Vol. 7963, pp. 344–353). Springer Link.
Abstract: Confidence estimation has recently become a hot topic in image processing and computer vision.Yet, several definitions exist of the term “confidence” which are sometimes used interchangeably. This is a position paper, in which we aim to give an overview on existing definitions,
thereby clarifying the meaning of the used terms to facilitate further research in this field. Based on these clarifications, we develop a theory to compare confidence measures with respect to their quality.
Keywords: Optical flow, confidence measure, performance evaluation
|
|
|
Carles Sanchez, Miguel Viñas, Coen Antens, Agnes Borras, & Debora Gil. (2018). "Back to Front Architecture for Diagnosis as a Service " In 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (pp. 343–346).
Abstract: Software as a Service (SaaS) is a cloud computing model in which a provider hosts applications in a server that customers use via internet. Since SaaS does not require to install applications on customers' own computers, it allows the use by multiple users of highly specialized software without extra expenses for hardware acquisition or licensing. A SaaS tailored for clinical needs not only would alleviate licensing costs, but also would facilitate easy access to new methods for diagnosis assistance. This paper presents a SaaS client-server architecture for Diagnosis as a Service (DaaS). The server is based on docker technology in order to allow execution of softwares implemented in different languages with the highest portability and scalability. The client is a content management system allowing the design of websites with multimedia content and interactive visualization of results allowing user editing. We explain a usage case that uses our DaaS as crowdsourcing platform in a multicentric pilot study carried out to evaluate the clinical benefits of a software for assessment of central airway obstruction.
|
|
|
Debora Gil, Agnes Borras, Sergio Vera, & Miguel Angel Gonzalez Ballester. (2013). "A Validation Benchmark for Assessment of Medial Surface Quality for Medical Applications " In 9th International Conference on Computer Vision Systems (Vol. 7963, pp. 334–343). Springer Berlin Heidelberg.
Abstract: Confident use of medial surfaces in medical decision support systems requires evaluating their quality for detecting pathological deformations and describing anatomical volumes. Validation in the medical imaging field is a challenging task mainly due to the difficulties for getting consensual ground truth. In this paper we propose a validation benchmark for assessing medial surfaces in the context of medical applications. Our benchmark includes a home-made database of synthetic medial surfaces and volumes and specific scores for evaluating surface accuracy, its stability against volume deformations and its capabilities for accurate reconstruction of anatomical volumes.
Keywords: Medial Surfaces; Shape Representation; Medical Applications; Performance Evaluation
|
|
|
Debora Gil, Jaume Garcia, Aura Hernandez-Sabate, & Enric Marti. (2010). "Manifold parametrization of the left ventricle for a statistical modelling of its complete anatomy " In 8th Medical Imaging (Vol. 7623, 304). SPIE.
Abstract: Distortion of Left Ventricle (LV) external anatomy is related to some dysfunctions, such as hypertrophy. The architecture of myocardial fibers determines LV electromechanical activation patterns as well as mechanics. Thus, their joined modelling would allow the design of specific interventions (such as peacemaker implantation and LV remodelling) and therapies (such as resynchronization). On one hand, accurate modelling of external anatomy requires either a dense sampling or a continuous infinite dimensional approach, which requires non-Euclidean statistics. On the other hand, computation of fiber models requires statistics on Riemannian spaces. Most approaches compute separate statistical models for external anatomy and fibers architecture. In this work we propose a general mathematical framework based on differential geometry concepts for computing a statistical model including, both, external and fiber anatomy. Our framework provides a continuous approach to external anatomy supporting standard statistics. We also provide a straightforward formula for the computation of the Riemannian fiber statistics. We have applied our methodology to the computation of complete anatomical atlas of canine hearts from diffusion tensor studies. The orientation of fibers over the average external geometry agrees with the segmental description of orientations reported in the literature.
|
|
|
Esmitt Ramirez, Carles Sanchez, & Debora Gil. (2019). "Localizing Pulmonary Lesions Using Fuzzy Deep Learning " In 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (pp. 290–294).
Abstract: The usage of medical images is part of the clinical daily in several healthcare centers around the world. Particularly, Computer Tomography (CT) images are an important key in the early detection of suspicious lung lesions. The CT image exploration allows the detection of lung lesions before any invasive procedure (e.g. bronchoscopy, biopsy). The effective localization of lesions is performed using different image processing and computer vision techniques. Lately, the usage of deep learning models into medical imaging from detection to prediction shown that is a powerful tool for Computer-aided software. In this paper, we present an approach to localize pulmonary lung lesion using fuzzy deep learning. Our approach uses a simple convolutional neural network based using the LIDC-IDRI dataset. Each image is divided into patches associated a probability vector (fuzzy) according their belonging to anatomical structures on a CT. We showcase our approach as part of a full CAD system to exploration, planning, guiding and detection of pulmonary lesions.
|
|
|
Joan M. Nuñez, Debora Gil, & Fernando Vilariño. (2013). "Finger joint characterization from X-ray images for rheymatoid arthritis assessment " In 6th International Conference on Biomedical Electronics and Devices (pp. 288–292). SciTePress.
Abstract: In this study we propose amodular systemfor automatic rheumatoid arthritis assessment which provides a joint space width measure. A hand joint model is proposed based on the accurate analysis of a X-ray finger joint image sample set. This model shows that the sclerosis and the lower bone are the main necessary features in order to perform a proper finger joint characterization. We propose sclerosis and lower bone detection methods as well as the experimental setup necessary for its performance assessment. Our characterization is used to propose and compute a joint space width score which is shown to be related to the different degrees of arthritis. This assertion is verified by comparing our proposed score with Sharp Van der Heijde score, confirming that the lower our score is the more advanced is the patient affection.
Keywords: Rheumatoid Arthritis; X-Ray; Hand Joint; Sclerosis; Sharp Van der Heijde
|
|
|
Ferran Poveda, Debora Gil, & Enric Marti. (2012). "Multi-resolution DT-MRI cardiac tractography " In Statistical Atlases And Computational Models Of The Heart: Imaging and Modelling Challenges (Vol. 7746, pp. 270–277). Springer Berlin Heidelberg.
Abstract: Even using objective measures from DT-MRI no consensus about myocardial architecture has been achieved so far. Streamlining provides good reconstructions at low level of detail, but falls short to give global abstract interpretations. In this paper, we present a multi-resolution methodology that is able to produce simplified representations of cardiac architecture. Our approach produces a reduced set of tracts that are representative of the main geometric features of myocardial anatomical structure. Experiments show that fiber geometry is preserved along reductions, which validates the simplified model for interpretation of cardiac architecture.
|
|
|
Jose Yauri, Aura Hernandez-Sabate, Pau Folch, & Debora Gil. (2021). "Mental Workload Detection Based on EEG Analysis " In Artificial Intelligent Research and Development. Proceedings 23rd International Conference of the Catalan Association for Artificial Intelligence. (Vol. 339, pp. 268–277).
Abstract: The study of mental workload becomes essential for human work efficiency, health conditions and to avoid accidents, since workload compromises both performance and awareness. Although workload has been widely studied using several physiological measures, minimising the sensor network as much as possible remains both a challenge and a requirement.
Electroencephalogram (EEG) signals have shown a high correlation to specific cognitive and mental states like workload. However, there is not enough evidence in the literature to validate how well models generalize in case of new subjects performing tasks of a workload similar to the ones included during model’s training.
In this paper we propose a binary neural network to classify EEG features across different mental workloads. Two workloads, low and medium, are induced using two variants of the N-Back Test. The proposed model was validated in a dataset collected from 16 subjects and shown a high level of generalization capability: model reported an average recall of 81.81% in a leave-one-out subject evaluation.
Keywords: Cognitive states; Mental workload; EEG analysis; Neural Networks.
|
|