|
Debora Gil, Jaume Garcia, Aura Hernandez-Sabate, & Enric Marti. (2010). "Manifold parametrization of the left ventricle for a statistical modelling of its complete anatomy " In 8th Medical Imaging (Vol. 7623, 304). SPIE.
Abstract: Distortion of Left Ventricle (LV) external anatomy is related to some dysfunctions, such as hypertrophy. The architecture of myocardial fibers determines LV electromechanical activation patterns as well as mechanics. Thus, their joined modelling would allow the design of specific interventions (such as peacemaker implantation and LV remodelling) and therapies (such as resynchronization). On one hand, accurate modelling of external anatomy requires either a dense sampling or a continuous infinite dimensional approach, which requires non-Euclidean statistics. On the other hand, computation of fiber models requires statistics on Riemannian spaces. Most approaches compute separate statistical models for external anatomy and fibers architecture. In this work we propose a general mathematical framework based on differential geometry concepts for computing a statistical model including, both, external and fiber anatomy. Our framework provides a continuous approach to external anatomy supporting standard statistics. We also provide a straightforward formula for the computation of the Riemannian fiber statistics. We have applied our methodology to the computation of complete anatomical atlas of canine hearts from diffusion tensor studies. The orientation of fibers over the average external geometry agrees with the segmental description of orientations reported in the literature.
|
|
|
Debora Gil, Aura Hernandez-Sabate, Antoni Carol, Oriol Rodriguez, & Petia Radeva. (2005). "A Deterministic-Statistic Adventitia Detection in IVUS Images " In ESC Congress. ,Sweden (EU).
Abstract: Plaque analysis in IVUS planes needs accurate intima and adventitia models. Large variety in adventitia descriptors difficulties its detection and motivates using a classification strategy for selecting points on the structure. Whatever the set of descriptors used, the selection stage suffers from fake responses due to noise and uncompleted true curves. In order to smooth background noise while strengthening responses, we apply a restricted anisotropic filter that homogenizes grey levels along the image significant structures. Candidate points are extracted by means of a simple semi supervised adaptive classification of the filtered image response to edge and calcium detectors. The final model is obtained by interpolating the former line segments with an anisotropic contour closing technique based on functional extension principles.
Keywords: Electron microscopy; Unbending; 2D crystal; Interpolation; Approximation
|
|
|
Debora Gil, Aura Hernandez-Sabate, Antoni Carol, Oriol Rodriguez, & Petia Radeva. (2005). "A Deterministic-Statistic Adventitia Detection in IVUS Images " In 3rd International workshop on International Workshop on Functional Imaging and Modeling of the Heart (pp. 65–74).
Abstract: Plaque analysis in IVUS planes needs accurate intima and adventitia models. Large variety in adventitia descriptors difficulties its detection and motivates using a classification strategy for selecting points on the structure. Whatever the set of descriptors used, the selection stage suffers from fake responses due to noise and uncompleted true curves. In order to smooth background noise while strengthening responses, we apply a restricted anisotropic filter that homogenizes grey levels along the image significant structures. Candidate points are extracted by means of a simple semi supervised adaptive classification of the filtered image response to edge and calcium detectors. The final model is obtained by interpolating the former line segments with an anisotropic contour closing technique based on functional extension principles.
Keywords: Electron microscopy; Unbending; 2D crystal; Interpolation; Approximation
|
|
|
Debora Gil, Aura Hernandez-Sabate, Mireia Burnat, Steven Jansen, & Jordi Martinez-Vilalta. (2009). "Structure-Preserving Smoothing of Biomedical Images " In 13th International Conference on Computer Analysis of Images and Patterns (Vol. 5702, pp. 427–434). Springer Berlin Heidelberg.
Abstract: Smoothing of biomedical images should preserve gray-level transitions between adjacent tissues, while restoring contours consistent with anatomical structures. Anisotropic diffusion operators are based on image appearance discontinuities (either local or contextual) and might fail at weak inter-tissue transitions. Meanwhile, the output of block-wise and morphological operations is prone to present a block structure due to the shape and size of the considered pixel neighborhood. In this contribution, we use differential geometry concepts to define a diffusion operator that restricts to image consistent level-sets. In this manner, the final state is a non-uniform intensity image presenting homogeneous inter-tissue transitions along anatomical structures, while smoothing intra-structure texture. Experiments on different types of medical images (magnetic resonance, computerized tomography) illustrate its benefit on a further process (such as segmentation) of images.
Keywords: non-linear smoothing; differential geometry; anatomical structures segmentation; cardiac magnetic resonance; computerized tomography.
|
|
|
Debora Gil, Oriol Rodriguez, J. Mauri, & Petia Radeva. (2006)." Statistical descriptors of the Myocardial perfusion in angiographic images" In Proc. Computers in Cardiology (pp. 677–680).
Abstract: Restoration of coronary flow after primary percutaneous coronary intervention in acute myocardial infarction does not always correlate with adequate myocardial perfusion. Recently, coronary angiography has been used to assess microcirculation integrity (Myocardial BlushAnalysis, MBA). Although MBA correlates with patient prognosis there are few image processing methods addressing objective perfusion quantification. The goal of this work is to develop statistical descriptors of the myocardial dyeing pattern allowing objective assessment of myocardial perfusion. Experiments on healthy right coronary arteries show that our approach allows reliable measurements without any specific image acquisition protocol.
Keywords: Anisotropic processing; intravascular ultrasound (IVUS); vessel border segmentation; vessel structure classification.
|
|
|
Debora Gil, Petia Radeva, & J. Mauri. (2002). "Ivus Segmentation Via a Regularized Curvature Flow " In X Congreso Anual de la Sociedad Española de Ingeniería Biomédica CASEIB 2002 (pp. 133–136). Saragossa, Espanya.
Abstract: Cardiac diseases are diagnosed and treated through a study of the morphology and dynamics of cardiac arteries. In- travascular Ultrasound (IVUS) imaging is of high interest to physicians since it provides both information. At the current state-of-the-art in image segmentation, a robust detection of the arterial lumen in IVUS demands manual intervention or ECG-gating. Manual intervention is a tedious and time consuming task that requires experienced observers, meanwhile ECG-gating is an acquisition technique not available in all clinical centers. We introduce a parametric algorithm that detects the arterial luminal border in in vivo sequences. The method consist in smoothing the sequences’ level surfaces under a regularized mean curvature flow that admits non-trivial steady states. The flow is based on a measure of the surface local smoothness that takes into account regularity of the surface curvature.
|
|
|
Debora Gil, Petia Radeva, Jordi Saludes, & J. Mauri. (2000). "Automatic Segmentation of Artery Wall in Coronary IVUS Images: A Probabilistic Approach " In International Conference on Pattern Recognition (Vol. 4, pp. 352–355).
Abstract: Intravascular ultrasound images represent a unique tool to analyze the morphology of arteries and vessels (plaques, restenosis, etc). The poor quality of these images makes unsupervised segmentation based on traditional segmentation algorithms (such as edge or ridge/valley detection) fail to achieve the expected results. In this paper we present a probabilistic flexible template to separate different regions in the image. In particular, we use elliptic templates to model and detect the shape of the vessel inner wall in IVUS images. We present the results of successful segmentation obtained from patients undergoing stent treatment. A physician team has validated these results.
|
|
|
Debora Gil, Petia Radeva, Jordi Saludes, & J. Mauri. (2000). "Automatic Segmentation of Artery Wall in Coronary IVUS Images: a Probabilistic Approach " In Proceedings of CIC’2000. Cambridge, Massachussets.
Abstract: Intravascular ultrasound images represent a unique tool to analyze the morphology of arteries and vessels (plaques, restenosis, etc). The poor quality of these images makes unsupervised segmentation based on traditional segmentation algorithms (such as edge or ridge/valley detection) fail to achieve the expected results. In this paper we present a probabilistic flexible template to separate different regions in the image. In particular, we use elliptic templates to model and detect the shape of the vessel inner wall in IVUS images. We present the results of successful segmentation obtained from patients undergoing stent treatment. A physician team has validated these results.
|
|
|
Debora Gil, Petia Radeva, & Fernando Vilariño. (2003). "Anisotropic Contour Completion " In Proceedings of the IEEE International Conference on Image Processing (I-869). Barcelona, Spain.
Abstract: In this paper we introduce a novel application of the diffusion tensor for anisotropic image processing. The Anisotropic Contour Completion (ACC) we suggest consists in extending the characteristic function of the open curve by means of a degenerated diffusion tensor that prevents any diffusion in the normal direction. We show that ACC is equivalent to a dilation with a continuous elliptic structural element that takes into account the local orientation of the contours to be closed. Experiments on contours extracted from real images show that ACC produces shapes able to adapt to any curve in an active contour framework. 1.
|
|
|
Aura Hernandez-Sabate, Debora Gil, & Petia Radeva. (2005). "On the usefulness of supervised learning for vessel border detection in IntraVascular Imaging " In Proceeding of the 2005 conference on Artificial Intelligence Research and Development (pp. 67–74). Amsterdam, The Netherlands: IOS Press.
Abstract: IntraVascular UltraSound (IVUS) imaging is a useful tool in diagnosis of cardiac diseases since sequences completely show the morphology of coronary vessels. Vessel borders detection, especially the external adventitia layer, plays a central role in morphological measures and, thus, their segmentation feeds development of medical imaging techniques. Deterministic approaches fail to yield optimal results due to the large amount of IVUS artifacts and vessel borders descriptors. We propose using classification techniques to learn the set of descriptors and parameters that best detect vessel borders. Statistical hypothesis test on the error between automated detections and manually traced borders by 4 experts show that our detections keep within inter-observer variability.
Keywords: classification; vessel border modelling; IVUS
|
|