|
Josep Llados, & Enric Marti. (1999)." A graph-edit algorithm for hand-drawn graphical document recognition and their automatic introduction into CAD systems" . Machine Graphics & Vision, 8, 195–211.
|
|
|
Josep Llados, & Enric Marti. (1999)." Graph-edit algorithms for hand-drawn graphical document recognition and their automatic introduction" . Machine Graphics & Vision journal, special issue on Graph transformation, .
|
|
|
Josep Llados, Jaime Lopez-Krahe, & Enric Marti. (1997). "A system to understand hand-drawn floor plans using subgraph isomorphism and Hough transform " In Machine Vision and Applications (Vol. 10, pp. 150–158).
Abstract: Presently, man-machine interface development is a widespread research activity. A system to understand hand drawn architectural drawings in a CAD environment is presented in this paper. To understand a document, we have to identify its building elements and their structural properties. An attributed graph structure is chosen as a symbolic representation of the input document and the patterns to recognize in it. An inexact subgraph isomorphism procedure using relaxation labeling techniques is performed. In this paper we focus on how to speed up the matching. There is a building element, the walls, characterized by a hatching pattern. Using a straight line Hough transform (SLHT)-based method, we recognize this pattern, characterized by parallel straight lines, and remove from the input graph the edges belonging to this pattern. The isomorphism is then applied to the remainder of the input graph. When all the building elements have been recognized, the document is redrawn, correcting the inaccurate strokes obtained from a hand-drawn input.
Keywords: Line drawings – Hough transform – Graph matching – CAD systems – Graphics recognition
|
|
|
Sergio Vera, Debora Gil, Agnes Borras, Marius George Linguraru, & Miguel Angel Gonzalez Ballester. (2013). "Geometric Steerable Medial Maps " . Machine Vision and Applications, 24(6), 1255–1266.
Abstract: In order to provide more intuitive and easily interpretable representations of complex shapes/organs, medial manifolds should reach a compromise between simplicity in geometry and capability for restoring the anatomy/shape of the organ/volume. Existing morphological methods show excellent results when applied to 2D objects, but their quality drops across dimensions.
This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial manifolds that avoids degenerated medial axis segments. Second, we introduce a continuous operator for accurate and efficient computation of medial structures of arbitrary dimension. We evaluate quantitatively the performance of our method with respect to existing approaches, by applying them to syn- thetic shapes of known medial geometry. We also show its higher performance for medical imaging applications in terms of simplicity of medial structures and capability for reconstructing the anatomical volume.
Keywords: Medial Representations ,Medial Manifolds Comparation , Surface , Reconstruction
|
|
|
Ferran Poveda. (2009). "Visualització i interpretació tridimensional de l’arquitectura de les fibres musculars del miocardi ". Master's thesis, , 08193 Bellaterra, Barcelona (Spain).
|
|
|
Aura Hernandez-Sabate, Lluis Albarracin, & F. Javier Sanchez. (2020). "Graph-Based Problem Explorer: A Software Tool to Support Algorithm Design Learning While Solving the Salesperson Problem " . Mathematics, 20(8(9)), 1595.
Abstract: In this article, we present a sequence of activities in the form of a project in order to promote
learning on design and analysis of algorithms. The project is based on the resolution of a real problem, the salesperson problem, and it is theoretically grounded on the fundamentals of mathematical modelling. In order to support the students’ work, a multimedia tool, called Graph-based Problem Explorer (GbPExplorer), has been designed and refined to promote the development of computer literacy in engineering and science university students. This tool incorporates several modules to allow coding different algorithmic techniques solving the salesman problem. Based on an educational design research along five years, we observe that working with GbPExplorer during the project provides students with the possibility of representing the situation to be studied in the form of graphs and analyze them from a computational point of view.
Keywords: STEM education; Project-based learning; Coding; software tool
|
|
|
Misael Rosales, Petia Radeva, Oriol Rodriguez-Leor, & Debora Gil. (2009). "Modelling of image-catheter motion for 3-D IVUS " . Medical image analysis, 13(1), 91–104.
Abstract: Three-dimensional intravascular ultrasound (IVUS) allows to visualize and obtain volumetric measurements of coronary lesions through an exploration of the cross sections and longitudinal views of arteries. However, the visualization and subsequent morpho-geometric measurements in IVUS longitudinal cuts are subject to distortion caused by periodic image/vessel motion around the IVUS catheter. Usually, to overcome the image motion artifact ECG-gating and image-gated approaches are proposed, leading to slowing the pullback acquisition or disregarding part of IVUS data. In this paper, we argue that the image motion is due to 3-D vessel geometry as well as cardiac dynamics, and propose a dynamic model based on the tracking of an elliptical vessel approximation to recover the rigid transformation and align IVUS images without loosing any IVUS data. We report an extensive validation with synthetic simulated data and in vivo IVUS sequences of 30 patients achieving an average reduction of the image artifact of 97% in synthetic data and 79% in real-data. Our study shows that IVUS alignment improves longitudinal analysis of the IVUS data and is a necessary step towards accurate reconstruction and volumetric measurements of 3-D IVUS.
Keywords: Intravascular ultrasound (IVUS); Motion estimation; Motion decomposition; Fourier
|
|
|
Debora Gil, Sergio Vera, Agnes Borras, Albert Andaluz, & Miguel Angel Gonzalez Ballester. (2017). "Anatomical Medial Surfaces with Efficient Resolution of Branches Singularities " . Medical Image Analysis, 35, 390–402.
Abstract: Medial surfaces are powerful tools for shape description, but their use has been limited due to the sensibility existing methods to branching artifacts. Medial branching artifacts are associated to perturbations of the object boundary rather than to geometric features. Such instability is a main obstacle for a condent application in shape recognition and description. Medial branches correspond to singularities of the medial surface and, thus, they are problematic for existing morphological and energy-based algorithms. In this paper, we use algebraic geometry concepts in an energy-based approach to compute a medial surface presenting a stable branching topology. We also present an ecient GPU-CPU implementation using standard image processing tools. We show the method computational eciency and quality on a custom made synthetic database. Finally, we present some results on a medical imaging application for localization of abdominal pathologies.
Keywords: Medial Representations; Shape Recognition; Medial Branching Stability ; Singular Points
|
|
|
Ferran Poveda, Jaume Garcia, Enric Marti, & Debora Gil. (2010). "Validation of the myocardial architecture in DT-MRI tractography " In Medical Image Computing in Catalunya: Graduate Student Workshop (pp. 29–30). Girona (Spain).
Abstract: Deep understanding of myocardial structure may help to link form and funcion of the heart unraveling crucial knowledge for medical and surgical clinical procedures and studies. In this work we introduce two visualization techniques based on DT-MRI streamlining able to decipher interesting properties of the architectural organization of the heart.
|
|
|
Enric Marti, Jaume Rocarias, & Ricardo Toledo. (2008). Caronte: gestión flexible de grupos de alumnos en asignaturas de universidad y actividades sobre estos grupos . Barcelona.
|
|