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Abstract In order to provide more intuitive and easily interpretable represen-
tations of complex shapes/organs, medial manifolds should reach a compromise
between simplicity in geometry and capability for restoring the anatomy/shape
of the organ/volume. Existing morphological methods show excellent results
when applied to 2D objects, but their quality drops across dimensions.

This paper contributes to the computation of medial manifolds from a
theoretical and a practical point of view. First, we introduce a continuous op-
erator for accurate and efficient computation of medial structures of arbitrary
dimension. Second, we present a validation protocol for assessing the suitabil-
ity of medial surfaces for anatomical representation in medical applications.
We evaluate quantitatively the performance of our method with respect to
existing approaches and show its higher performance for medical imaging ap-
plications in terms of medial simplicity and capability of reconstructing the
anatomical volume.
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Alma I.T. Systems, Barcelona, Spain
E-mail: sergio.vera@alma3d.com
E-mail: miguel.gonzalez@alma3d.com

Debora Gil, Agnés Borràs
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1 Introduction

Medial representations have gained increased popularity at describing [45,44,
46,47,40] and segmenting structures [48,21,10]. While other surface represen-
tation methods model only the external surface of objects, medial represen-
tations can model also the interior of the shape by providing a radial per-
pendicular coordinate that extends from the medial surface [6]. In medical
applications, this is particularly useful for addressing the following topics:

– Localization of injured tissue. The radial coordinate of medial represen-
tations allows parameterizing [15,34] the (possibly diseased) parenchyma
of organs, as well as their internal vascular system, powerful sources of
information in organ functionality, analysis and diagnosis

– Segmentation of medical images. In medical imaging, techniques such as
M-Reps [28,13] and CM-Reps [51,39] have shown the potential to describe
complex shapes in a versatile manner. Using information of a medial sur-
face for medical imaging segmentation has proven to improve segmentation
results [29,37]. It follows that deformable medial modelling has been used
in a variety of medical imaging analysis applications, including computa-
tional neuroanatomy [53,35], 3D cardiac modelling [36] or cancer treatment
planning [33,11].

– Modelization of anatomy. In shape analysis, medial representations can
provide better information than Point Distribution Models (PDM) since
they can model not only the shape but also the interior variations [52].
Medial manifolds of organs have proved robust and accurate to study group
differences in internal structures of the brain [35,34]. They also provide
more intuitive and easily interpretable representations of complex organs
[50] and their relative positions [25].

(a) (b)

Fig. 1: Medial surfaces obtained using a 6-connected neighborhood, (a), and
a 26 connected neighborhood, (b).
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In order to accurately address the above topics, the medial representation
has to achieve a good reconstruction of the full anatomy and guarantee that
the boundaries of the organ are reached from the medial surface. It follows
that anatomical medial manifolds must be simple enough to allow an easy
generation of the radial axis, but complete enough to allow a satisfactory
reconstruction of the whole volume. Representations of the original anatomical
geometry are accurate as far as the extracted medial manifold satisfies [30]:

– Homotopy : The medial manifold has to have the same topology (same
number of foreground objects and holes) as the original shape .

– Thinness: The resulting medial shape should be one pixel wide. The specific
connectivity used to consider two pixels as adjacent, should be considered
at this point.

– Medialness: The medial structure should lie as close as possible to the
center of the original object.

Many methods are based on morphological thinning of either a binary seg-
mentation or, in order to ensure medialness, the distance map to the bound-
ary [8,30,32,4,27,20,38]. Such methods require the topological definition of a
neighborhood set and conditions for the removal of simple voxels, i.e. voxels
that can be removed without changing the topology of the object. These topol-
ogy definitions are trivial in 2D, but their complexity increases exponentially
with the dimension of the embedding space [22]. Further, simplicity tests alone
only produce (1D) medial axis so additional tests are needed to know if a voxel
lies in a surface and thus cannot be deleted even if it is simple [30,20]. Finally,
small changes in surface and simplicity tests or in the order in which voxels
are traversed generate completely different surfaces (as illustrated in Fig. 1).

Surface tests might introduce medial axis segments in the medial surface,
which is against the mathematical definition of manifold. Additionally, since
medial axes hinder the calculation of the radial coordinate, such medial struc-
tures are ill-conditioned for the generation of proper medial representations
[44]. Consequently, they may require further pruning before their use in sub-
sequent applications [30,3,20]. However, there is no easy way to tell which
manifolds can be safely removed without hurting the capability of representa-
tion of anatomical structures. Pruning strategies rely on additional topological
tests for removal of unwanted medial axis [30,3] or surface segments [20]. How-
ever, an aggressive pruning might break topology or remove important medial
manifold segments for shape reconstruction.

Another line of research approximates medial surfaces from a tetrahedral
mesh of a set of points sampled on the object boundary [12,31,2,3]. These
methods provide an elegant conceptual description but present some practical
limitations. First, the density of the boundary sampling required for the right
medial topology is a-priori unknown. This leads to a selective refinement of
the initial sampling based on topological and geometric tests which complexity
significantly increases for capturing anatomical finest details [12]. Second, in
3D it is not always guaranteed convergence to the medial surface [23], the



4 Sergio Vera et al.

approximation is prone to fail at branches [12,31] and might generate multiple
spikes [3].

Energy-based methodologies [1,42,41] constitute a completely different ap-
proach since medial points are characterized as local maxima of a potential
map. A main advantage over topological inspired methods is that the geo-
metric properties of the medial surface are determined by the definition of
the potential map. The shape representation introduced in [1] relies on a po-
tential map that represents distances to the object boundary avoiding the
generation of extra medial branches at boundary corners. Medial surfaces are
reconstructed by tracking the gradient of the potential map from the object
boundary points. This introduces two main limitations. On one hand, it is
prone to give non-connected medial surfaces [1]. On the other hand, the step
is so computationally expensive that it is hardly feasible over dimension two. In
a previous work [41], we explored the potential of energy-based methods com-
bined with a Non-Maxima Suppression (NMS) scheme for extracting medial
surfaces. Experiments on a reduced set of synthetic shapes showed the ca-
pability of energy-based methods for surpassing the performance of thinning
methodologies in terms of medialness (thanks to the energy based scheme)
and thinness (thanks to NMS binarization). A main concern was a significant
drop of the response at branches and the generation of internal holes in me-
dial surfaces, which violated the homotopy condition. In [41], homotopy was
partially recovered using morphological closing. Recently, we identified the
theoretical weaknesses of existing ridge detectors in order to define a novel
energy [42] able to produce medial surfaces achieving a compromise between
simplicity and reconstruction power for representation and parametrization of
anatomical structures [43].

In this work, we contribute to the computation of medial manifolds from a
theoretical and practical point of view. From the theoretical side, we propose a
two-step method that combines the best of [42] and [41] in order to get medial
surfaces fulfilling the three main properties (homotopy, thinness and medial-
ness). From a practical point of view, we define a benchmark for validating
the quality of medial surfaces for medical applications.

Our two step method for medial surface computation is based on the ridges
of the distance map. We use a medial map (called Geometric Steerable Medial
Map, GSM2) based on ridge detectors that combines the advantages of steer-
able filters and level sets geometry [41]. In a second step, we use Non-Maxima
Suppression (NMS) [9,42] to binarize GSM2 and obtain a one pixel wide me-
dial surface. A binarization based on NMS does not depend on any topological
definition and, given that regardless of the space dimension it only requires one
direction to be defined, it scales well across the number of dimensions. For a
reliable implementation of the methodology in clinical applications, we devote
special attention to the analysis of the parametric values and their impact in
the performance of the whole strategy.

Our experiments define a solid validation protocol for statistical analysis
of the capability of our method to fulfill the 3 main properties that a medial
surface should satisfy regardless of the medial topology and volume geome-
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Fig. 2: Main steps in the generation of a medial surface.

try. The quality of medial structures is assessed on a benchmark of synthetic
shapes of known medial geometry. The performance of our method is com-
pared to existing topological thinning and pruning techniques. Finally, we
present an application for representation of abdominal volumes that shows
the reconstruction capabilities and higher ability of GSM2 to locate patho-
logic deformations. This experiment also illustrates the potential for pruning
medial surfaces consistently with the object boundary geometry.

The contents are organized as follows. Section 2 introduces our operator for
reliable computation medial structures, including details about parameter set-
ting in Section 2.2. Section 3 presents our benchmark for validation of medial
surface quality. Section 4 reports our experiments on synthetic shapes (sec-
tion 4.1) and volume reconstruction of medical volumes (section 4.2). Finally,
conclusions and future work are exposed in Section 5.

2 Medial Surfaces Capturing the Essential Geometry of Volumes

The computation of medial manifolds from a segmented volume may be split
into two main steps (as depicted in Fig. 2): computation of a medial map
from the original volume and binarization of such map. Medial maps should
achieve a discriminant value on the shape central voxels. Meanwhile, the bina-
rization step should ensure that the resulting medial structures fulfil the three
conditions: medialness, thinness and homotopy.

Distance transforms are the basis for obtaining medial manifolds in any di-
mension. The distance map is generated by computing the Euclidean distance
transform of the binary mask representing the volumetric shape. By definition,
the maximum values of the distance map are located at the center of the shape
at voxels corresponding to the medial structure. It follows that the medial sur-
face could be extracted from the raw distance map by an iterative thinning
process [30]. Two alternative binarizations that scale well with dimension are
thresholding and NMS. Thresholding keeps pixels with medial map energy
above a given value. Therefore, it requires that the medial map is constant
along the medial surface. Non-Maxima Suppression keeps only these pixels
attaining a local maximum of the medial map in a given direction. Unless the
medial map maxima are flat, NMS also produces one pixel-wide surfaces.
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Further examination of the distance map shows that its central maximal
voxels are connected and constitute a ridge surface of the distance map. We
propose using a normalized ridge map with NMS-based binarization for com-
puting medial surfaces.

Ridges/valleys in a digital N-Dimensional image are defined as the set of
points that are extrema (minima for ridges and maxima for valleys) in the
direction of greatest magnitude of the second order directional derivative [18].
In image processing, ridge detectors are based either on level sets geometry
[26] or image intensity profiles [14].

The map described in [26] defines ridges as lines joining points of maximum
curvature of the distance map level sets. This operator yields homogeneous
ridge responses with a high medialness discrimination power. It is computed
using the maximum eigenvector of the structure tensor of the distance map as
follows.

Let D denote the distance map to the shape and let its gradient, ∇D, be
computed by convolution with partial derivatives of a Gaussian kernel:

∇D = (∂xDσ, ∂yDσ, ∂zDσ) = (∂xgσ ∗D, ∂ygσ ∗D, ∂zgσ ∗D)

being gσ a Gaussian kernel of variance σ and ∂x, ∂y and ∂z partial derivative
operators. The structure tensor or second order matrix [5] is given by averaging
the projection matrices onto the distance map gradient:

ST ρ,σ(D) =

 gρ ∗ ∂xD2
σ gρ ∗ ∂xDσ∂yDσ gρ ∗ ∂xDσ∂zDσ

gρ ∗ ∂xDσ∂yDσ gρ ∗ ∂yD2
σ gρ ∗ ∂yDσ∂zDσ

gρ ∗ ∂xDσ∂zDσ gρ ∗ ∂yDσ∂zDσ gρ ∗ ∂zD2
σ

 (1)

for gρ a Gaussian kernel of variance ρ. Let V be the eigenvector of principal

eigenvalue of ST ρ,σ(D) and consider its reorientation Ṽ along the distance
gradient, ∇D = (P,Q,R), given as:

Ṽ = sign(< V · ∇D >) ·V

for < · > the scalar product. The ridgeness measure [26] is given by the
divergence:

NRM := div(Ṽ ) = ∂xP + ∂yQ+ ∂zR (2)

The above operator assigns positive values to ridge pixels and negative values
to valley ones. The more positive the value is, the stronger the ridge pattern
is. A main advantage over other operators (such as second order oriented
Gaussian derivatives) is that NRM ∈ [−N,N ] for N the dimension of the
volume. In this way, it is possible to set a threshold common to any volume
for detecting significant ridges and, thus, points likely belong to the medial
surface.

However, by its geometric nature, NRM has two main limitations. In or-
der to be properly defined, NRM requires that the vector V uniquely defines
the tangent space to image level sets. Therefore, the operator achieves strong
responses in the case of one-fold medial manifolds, but significantly drops any-
where two or more medial surfaces intersect each other. Additionally, NRM
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responses are not continuous maps but step-wise almost binary images (see
Fig.3, left). Such discrete nature of the map is prone to hinder the perfor-
mance of the NMS binarization step that removes some internal voxels of the
medial structure and, thus, introduces holes in the final medial surface.

On the other side, ridge maps based on image intensity are computed by
convolution with a bank of steerable filters [14]. Each filter is defined by 2nd
derivatives of (oriented) anisotropic 3D Gaussian kernels:

gΘσ = g
(θ,ϕ)
(σx,σy,σz)

=
1

(2π)3/2σxσyσz
e
−
(

x̃2

2σ2
x
+ ỹ2

2σ2
y
+ z̃2

2σ2
z

)

for (x̃, ỹ, z̃) the coordinates given by rotations of angles θ and ϕ that transform
the z-axis into the unitary vector (cosϕ cos θ, cosϕ sin θ, sinϕ). We note that
by tuning the anisotropy of the Gaussian, we can detect independently medial
surfaces and medial axes. For detecting sheet-like ridges, the scales should be
set to σz < σx = σy, while for medial axes they should fulfill σz < σx < σy.

The second partial derivative along the z axis constitutes the principal
kernel for computing ridges:

∂2
zg

Θ
σ = (z̃2/σ4

z − 1/σ2
z)g

Θ
σ (3)

The response of the operator is calculated as the maximum response for a
discrete sampling of the angulation and the scale:

SGR := max
i,j,k

(
∂2
zg

Θi,j
σk

∗D
)

(4)

for Θi,j given by θi = {i π
N ,∀i = 1, . . . , N} and ϕj = {j π

M , ∀j = 1, . . . ,M} and
σk = (σk

x, σ
k
y , σ

k
z ) = (2k+1, 2k+1, 2k), k = [0,K].

A main advantage of using steerable filters is that their response provides
continuous maps which ensure completeness of the surfaces obtained by NMS
binarization. Besides, since they decouple the space of possible orientations
for medial surfaces, their response does not decrease at self-intersections (see
Fig. 3, center). Their main counterpart is that their response is not normalized,
so setting the threshold for binarization becomes a delicate issue.

The analysis above shows that geometric and intensity methods have com-
plementary advantages and shortcomings. Therefore, we propose [42] combin-
ing them into the following Geometric Steerable Medial Map (GSM2):

GSM2 := SGR(NRM) (5)

Given that the properties of medial surfaces are determined by the medial
map, the advantages of GSM2 are two-fold. On one hand, steerable filters
provide a continuous approximation to NRM semi-discrete maps with a more
uniform response at self-intersecting points. On the other hand, because NRM
maps have a sharp response at central voxels, GSM2 still provides a highly
selective response at ridges. In this manner GSM2 generates medial maps with
good combination of specificity in detecting medial voxels while having good
characteristics for NMS binarization, which requires a continuous response in
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Fig. 3: Performance of different ridge operators. The geometric NRM (left)
produces highly discriminant ridge values. Steerable Gaussian filters (center)
are less sensible to strong ridges while having increased sensitivity to small,
secondary ridges. Finally, the combined approach GSM2 (right) inherits the
strong features of each approach.

order to avoid internal holes. Finally, GSM2 allows the algorithm to focus on
the (shape) relevant medial structures, while small ridges, due to noise in the
shape frontier can be ignored. While working with medical image segmenta-
tions this means that GSM2 allows to gather the anatomically relevant surfaces
while largely ignoring small spurious manifolds.

2.1 Non-Maxima Suppression Binarization

The usage of NMS allows to obtain the voxels with higher ridgeness value and
obtain a thin, one pixel wide medial surface. NMS consists in checking the two
neighbors of a pixel in a specific direction, V = (Vx, Vy, Vz), and delete pixels
if their value is not the maximum one. Let R be a generic ridge map, then its
NMS map along the direction V is given by:

NMSR(x, y, z) =

{
R(x, y, z) if R(x, y, z) > max(RV+, RV−)
0 otherwise

for RV+ = R(x+ Vx, y + Vy, z + Vz) and RV− = R(x− Vx, y − Vy, z − Vz). A
thresholding of NMSR produces 1-pixel wide surfaces.

The search direction for local maxima is obtained from the structure tensor
of the ridge map, STρ,σ(GSM2). Its eigenvector of greatest eigenvalue indi-
cates the direction of highest variation of the ridge image and that direction
is perpendicular to the medial surface plane. NMS image must be binarized
to generate a final medial surface image. As GSM2 produces consistent val-
ues along ridges thanks to its normalized origin (NRM), the value τ suited to
binarize the ridges can be obtained via basic histogram threshold calculation,
such as Otsu thresholding.
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2.2 Parameter Setting

Unlike most of existing parametric methods, the theoretical properties of
GSM2 provide a natural way of setting parametric values regardless of the
volume size and shape. Our method depends on the parameters involved in
the definition of the map GSM2 and in the NMS binarization step.

The parameters arising in the definition of GSM2 are the derivation, σ, and
integration, ρ, scales of the structure tensor STρ,σ(D) used to compute NRM
and the scales, σk = (σk

x, σ
k
y , σ

k
z ), and orientations, Θi,j , defining the steerable

filter bank in (5). The derivation scale σ is used to obtain regular gradients
in the case of noisy images. The larger it is the more regular the gradient
will be at the cost of losing contrast. The integration scale ρ used to average
the projection matrices corresponds to time in a solution to the heat equation
with initial condition the projection matrix. Therefore large values provide a
regular extension of the level sets normal vector, which can be used for contour
closing [16]. Since in our case we apply NRM to a regular distance map with
well defined completed ridges, σ and ρ can be set to their minimum values,
σ = 0.5 and ρ = 1. Concerning steerable filters parameters, scale depends
on the thickness of the ridge and orientations on the complexity of the ridge
geometry. The selection of the scale might be critical in the general setting of
natural scenes [23]. However in our case, SGR is applied to a normalized ridge
map that defines step-wise almost binary images of ridges (see Fig. 3, left).
Therefore, the choice of scale is not critical anymore. In order to get medial
maps as accurate as possible, we recommend using a minimum anisotropic
setting: σz = 1, σx = σy = 2. Finally, orientation sampling should be dense
enough in order to capture any local geometry of medial surfaces. In the case
of using the minimum scale, eight orientations, N = M = 8, are enough.

It follows that GSM2 is given by:

GSM2 = max
i,j

(
∂2
zg

Θi,j

(2,2,1) ∗NRM
)

(6)

for NRM computed over ST1,0.5(D) and Θi,j computed setting N = M = 8.
The parameters involved in NMS binarization step are the scales of the

structure tensor STρ,σ(GSM2) and the binarizing threshold, τ . Like in the case
of NRM, GSM2 is a regular function which maximums define closed medial
manifolds, so we set the structure tensor scales to their minimum values σ =
0.5 and ρ = 1. Concerning τ , it can be obtained using any histogram threshold
calculation, since GSM2 inherits the uniform discriminative response along
ridges of NRM .

3 Validation Benchmark

In order to address the representation of organs for medical use, medial rep-
resentations should achieve a good reconstruction of the full anatomy and
guarantee that the boundaries of the organ are reached from the medial sur-
face. Given that small differences in algorithm criteria can generate different
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surfaces, we are interested in evaluating the quality of the generated manifold
as a tool to recover the original shape.

Validation in the medical imaging field is a delicate issue due to the difficul-
ties for generating ground truth data and quantitative scores valid for reliable
application to clinical practice. In this section, we propose a benchmark for
evaluating medial surface quality in the context of medical applications. The
benchmark is divided in two tests. The first test evaluates the quality of the
medial surface generated, while the second one explores the capabilities of the
generated surfaces to recover the original volume and describing anatomical
structures.

3.1 Medial Surface Quality

Surface quality tests start from known medial surfaces, that will be considered
as ground truth. From this surfaces, volumetric objects can be generated by
placing spheres of different radii at each point of the surface. The newly created
object is then used as input to several medial surface algorithms and the
resulting medial surfaces, compared with the ground truth.

The test set of synthetic volumes / surfaces aims to cover different key
aspects of medial surface generation (see first row in Fig.4). The first batch
of surfaces (labelled ’Simple’) includes objects generated with a single medial
surface. A second batch of surfaces is generated using two intersecting medial
surfaces (labelled ’Multiple’), while a last batch of objects (labelled ’Homo-
topy’) covers shapes with different number of holes. Each family of medial
topology has 20 samples. The volumetric object obtained from a surface can
be generated by using spheres of uniform radii (identified as ’UnifDist’) or
with spheres of varying radii (identified as ’VarDist’).

Volumes are constructed by assigning a radial coordinate to each medial
point. In the case of UnifDist, all medial points have the same radial value,
while for VarDist they are assigned a value in the range [r1, r2] using a poly-
nomial. The values of the radial coordinate must be in a range ensuring that
volumes will not present self intersections. Therefore, the maximum range and
procedure this radius is assigned depends on the medial topology:

– Simple. In this case, there are no restrictions on the radial range.
– Multiple. For branching medial surfaces, especial care must be taken at

surface self-intersecting points. At these locations, radii have to be below
the maximum value that ensures the the medial representation defines a
local coordinate change [17]. This maximum value depends on the principal
curvatures of the intersecting surfaces [17] and it is computed for each
surface. Let X be the medial surface, Z denote the self-intersection points
and d(Z) the distance map to Z. The radial coordinate is assigned as
follows:

R(X) = min(R(X),max(rZ , d(Z)))



Geometric Steerable Medial Maps 11

for R(X) the value of the polynomial function and rZ the maximum value
allowed at self-intersections. In this manner, we obtain a smooth distribu-
tion of the radii ensuring volume integrity.

– Homotopy. In order to be consistent with the third main property of medial
surfaces [30], volumes must preserve all holes of medial surfaces. In order
to do so, the maximum radius r2 is set to be under the minimum of all
surface holes radii.

The quality of medial surfaces has been assessed by comparing them to
ground truth surfaces in terms of surface distance [19]. The distance of a voxel
y to a surface X is given by: dX(y) = minx∈X ∥y − x∥, for ∥ · ∥ the Euclidean
norm. If we denote by X the reference surface and Y the computed one, the
scores considered are:

1. Standard Surface Distances:

AvD =
1

|Y |
∑
y∈Y

dX(y) MxD = max
y∈Y

(dX(y))

2. Symmetric Surface Distances:

AvSD =
1

|X|+ |Y |

∑
x∈X

dY (x) +
∑
y∈Y

dX(y)


MxSD = max

(
max
x∈X

(dY (x)),max
y∈Y

(dX(y))

)
Standard distances measure deviation from medialness, while differences

between standard and symmetric distances indicate the presence of homotopy
artifacts and presence of unnecessary medial segments.

For each family and method, we have computed quality scores statistical
ranges as µ ± σ, for µ and σ the average and standard deviation computed
over the 20 samples of each group of shapes. The Wilcoxon signed rank test
[49] has been used to detect significant differences across performances.

3.2 Reconstruction Power for Clinical Applications

In medical imaging applications the aim is to generate the simplest medial
surface that allows recovering the original volume without losing significant
voxels. Volumes recovered from surfaces generated with the different methods
are compared with ground truth volumes. In order to provide a real scenario
for the reconstruction tests we have used 14 livers from the SLIVER07 chal-
lenge [19] as a source of anatomical volumes. Volumes are reconstructed by
computing the medial representation [6] with radius given by the values of the
distance map on the computed medial surfaces.

Comparisons with the original shape are based on the average and maxi-
mum symmetric surface distances (AvSD and MxSD described in section 4.1),
as well as the following volumetric measures:
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1. Volume Overlap Error:

VOE (A,B) = 100×
(
1− 2

|A ∩B|
|A|+ |B|

)
2. Relative Volume Difference:

RVD(A,B) = 100× |A| − |B|
|B|

3. Dice coefficient:

Dice(A,B) =
2|A ∩B|
|A|+ |B|

Aside from dice coefficient, lower metric values indicate better reconstruction
capability.

4 Validation Experiments

Our validation protocol has been applied to the method described in Section
2. In order to compare to morphological methods, we have also applied it to
an ordered thinning using a 6-connected neighborhood criterion for defining
medial surfaces (labelled Th6) described in [7], a 26-connected neighborhood
surface test (labelled Th26) following [30]. The consistency of surface pruning is
tested on a pruned version of the 26-connected neighborhood method (labelled
ThP26) that does not allow degenerated medial axis segments and the scheme
(labelled Tao6) described in [20] that alternates 6-connected curve and surface
thinning with more sophisticated pruning stages.

4.1 Medial Surface Quality

Figure 4 shows an example of the synthetic volumes in the first row and
the computed medial surfaces in the remaining rows. Columns exemplify the
different families of volumes generated: one (Simple in 1st and 2nd columns)
and two (Multiple in 3rd and 4th columns) foil surfaces, as well as, surfaces
with holes (Homotopy in 5th and 6th columns). For each kind of topology we
show a volume generated with constant (1st, 3rd and 5th columns) and variable
distance (2nd, 4th and last columns). We show medial surfaces in solid meshes
and the synthetic volume in semi-transparent color. The shape of surfaces
produced using morphological thinning strongly depends on the connectivity
rule used. In the absence of pruning, surfaces, in addition, have either extra
medial axes attached or extra surface branches in the case pruning is included
as part of the thinning surface tests (Tao6). On the contrary, GSM2 medial
surfaces have a well defined shape matching the original synthetic surface.

Table 1 reports error ranges for the four methods and the different types of
synthetic volumes, as well as total errors in the last column. For all methods,
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Simple Multiple Homotopy

UnifDist VarDist UnifDist VarDist UnifDist VarDist

G
T

T
h
6

T
h
2
6

T
h
P

2
6

T
a
o
6

G
S
M

2

Fig. 4: Medial surfaces. Examples of the compared methods for each synthetic
volume family.

there are not significant differences between standard and symmetric distances
for a given volume. This indicates a good preservation of homotopy. Even with
pruning, thinning has significant geometric artifacts (maximum distances in-
crease) and might drop its performance for variable distance volumes due to a
different ordering for pixel removal and type of surface preserved. According to
a Wilcoxon signed rank test, strategies alternating curve and surface thinning
with pruning stages have worse average distances than other morphological
strategies (p < 0.0001 for AvD and p < 0.0001 for AvSD). Given that maxi-
mum distances do not significantly differ ( p = 0.4717, p = 0.6932, p = 0.7752
for MxD and p = 0.9144, p = 0.7463, p = 0.6669 for MxSD), this indicates
the introduction of extra structures of larger size (extra surface branches in
Tao6 for the variable volumes shown in Fig. 4).

The performance of GSM2 is significantly better than other methods (Wilcoxon
signed rank test with p < 0.0001) presents high stability across volume geome-
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tries and produces accurate surfaces matching synthetic shapes. The small in-
crease errors for multiple self-crossing surfaces is explained by the presence of
holes at intersections between medial manifolds. Still its overall performance
clearly surpasses performance of morphological approaches.

Simple Multiple Homotopy Total

UnifDist VarDist UnifDist VarDist UnifDist VarDist

GSM2

AvD 0.28± 0.09 0.28± 0.07 0.38± 0.09 0.43± 0.18 0.37± 0.18 0.34± 0.14 0.34± 0.14

MxD 2.99± 0.50 3.50± 1.53 3.56± 0.53 4.76± 1.51 3.39± 0.48 3.70± 0.84 3.65± 1.13

AvSD 0.24± 0.05 0.25± 0.05 0.37± 0.32 0.37± 0.18 0.29± 0.10 0.28± 0.08 0.30± 0.17

MxSD 3.02± 0.46 3.66± 1.52 4.10± 2.61 4.76± 1.51 3.39± 0.48 3.70± 0.84 3.78± 1.52

Th6

AvD 1.52± 0.27 5.63± 2.19 1.66± 0.30 3.05± 0.75 1.56± 0.35 2.96± 1.17 2.73± 1.80

MxD 5.55± 0.26 16.21± 4.76 5.82± 0.27 10.75± 3.40 5.54± 0.20 10.17± 3.20 9.01± 4.72

AvSD 1.04± 0.21 4.34± 1.94 1.16± 0.24 2.24± 0.56 1.09± 0.28 2.13± 0.98 2.00± 1.48

MxSD 5.55± 0.26 16.21± 4.76 5.82± 0.27 10.75± 3.40 5.54± 0.20 10.17± 3.20 9.01± 4.72

Th26

AvD 0.85± 0.25 3.15± 1.34 1.00± 0.19 1.89± 0.52 0.86± 0.37 1.63± 0.84 1.56± 1.07

MxD 5.51± 0.25 16.17± 4.78 5.58± 0.19 10.64± 3.43 5.46± 0.25 10.09± 3.21 8.91± 4.75

AvSD 0.56± 0.14 2.02± 0.92 0.67± 0.12 1.24± 0.35 0.59± 0.22 1.05± 0.56 1.02± 0.69

MxSD 5.51± 0.25 16.17± 4.78 5.58± 0.19 10.64± 3.43 5.46± 0.25 10.09± 3.21 8.91± 4.75

ThP26

AvD 0.57± 0.20 2.24± 1.00 0.70± 0.17 1.38± 0.37 0.54± 0.24 1.11± 0.62 1.09± 0.79

MxD 5.49± 0.27 16.16± 4.78 5.58± 0.19 10.61± 3.43 5.41± 0.27 10.08± 3.23 8.89± 4.76

AvSD 0.41± 0.11 1.38± 0.61 0.50± 0.11 0.92± 0.24 0.41± 0.12 0.72± 0.37 0.72± 0.47

MxSD 5.49± 0.27 16.16± 4.78 5.58± 0.19 10.61± 3.43 5.41± 0.27 10.08± 3.23 8.89± 4.76

Tao6

AvD 0.79± 0.21 4.82± 2.05 0.86± 0.17 2.46± 1.09 0.85± 0.29 2.48± 1.20 2.04± 1.79

MxD 4.87± 0.20 17.55± 5.19 4.92± 0.17 11.10± 3.71 4.79± 0.21 11.64± 4.33 9.14± 5.68

AvSD 0.51± 0.14 3.92± 1.73 0.59± 0.13 2.00± 0.96 0.59± 0.27 1.99± 1.03 1.60± 1.52

MxSD 4.89± 0.18 17.55± 5.19 5.32± 1.42 11.10± 3.71 5.53± 3.26 11.87± 4.25 9.38± 5.73

Table 1: Error ranges (mean and standard deviation) for the Synthetic Volumes

4.2 Reconstruction Power for Clinical Applications

Table 2 reports the statistical ranges for all methods and measures computed
for the 14 livers. There are not significant differences among methods and best
performers vary depending on the quality measure. However, our approach
and the two thinnings, Th26P and Tao6, have an overall better reconstruction
power.
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Figure 5 shows the medial surface of healthy liver obtained with the thin-
ning methods and Fig. 6 left, GSM2 medial surface. In the case of thinning
based methods, medial manifolds have a more complex geometry than GSM2
and might include extra structures and self intersections (Fig. 5). In medical
applications such extra structures might hinder the identification of abnormal
or pathological structures. This is not the case for GSM2 surfaces as exempli-
fied in Fig. 6. The oversized superior lobe on the right liver is captured by the
presence of an unusual medial manifold configuration.

(a) (b)

(c) (d)

Fig. 5: Medial manifolds of a healthy liver generated with morphological meth-
ods. Th6 (a), Th26 (b), ThP26 (c) and Tao6 (d).

5 Conclusions and Discussion

Medial manifolds are powerful descriptors of shapes. The method presented
in this paper allows the computation of medial manifolds without relying in
morphological methods nor neighbourhood or surface tests. Additionally, it
can be seamlessly implemented regardless of the dimension of the embedding
space.

The performance of our method is compared to current morphological thin-
ning methods in terms of the quality of medial manifolds and their capability
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GSM2 Th6 Th26 ThP26 Tao6

Volume Error
VOE 7.96± 1.70 8.84± 1.73 8.25± 1.72 7.84± 1.68 8.49± 1.77
RVD 8.49± 2.03 9.10± 2.10 8.96± 2.08 7.86± 2.23 5.91± 1.99
Dice .959± .009 .954± .009 .957± .009 .963± .005 .955± .010

Surface Dist.
AvSD 0.80± 0.06 0.89± 0.06 0.83± 0.05 0.70± 0.11 0.83± 0.06
MxSD 5.61± 2.68 6.00± 2.58 5.52± 2.56 5.94± 1.45 6.42± 2.33

Table 2: Mean and standard deviation of errors in volume reconstruction for
each metric.

Fig. 6: Medial Manifolds of a healthy liver (left) and a liver with an unusual
lobe (right).

to recover the original volume. For the first experiment a battery of synthetic
shapes covering different medial topologies and volume thickness has been gen-
erated. For the second one, we have used a public database of CT volumes of
livers, including pathological cases with unusual deformations. The following
interesting points are derived from our experiments.

The geometry of medial manifolds obtained using morphological methods
strongly depends on the description of pixel neighbourhoods. Besides, they are
prone to include spurious extra branches that require a further pruning. Ex-
periments on synthetic surfaces show that the performance depends on both
medial surface topology and volume thickness. Although there are not sig-
nificant differences among methods in terms of reconstruction capabilities, in
medical applications extra structures hinder the identification of abnormal or
pathological structures.

The proposed method has several advantages over thinning strategies. It
performs equally across medial topologies and volume thickness. The result-
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ing medial surfaces are of greater simplicity than the generated by thinning
methods. Although having this minimalistic property, the resulting medial
manifolds are suitable for locating unusual pathological shapes and properly
restore original volumes. We conclude that our methodology reaches the best
compromise between simplicity in geometry and capability for restoring the
original volumetric shape.

Any simplification of a medial surface results in a drop in reconstruction
quality as illustrated in the images of fig. 7. Fig. 7(a) shows a medial surface
of a liver with a pruned version removing the top branch in light red. Fig. 7(b)
shows the volumes reconstructed using the pruned surface (light red), as well
as, the complete one (transparent black). In this case, the pruned surface can-
not reconstruct the external part of the superior lobe of the liver. This drop
in accuracy is hard to relate to the simplification process because the branch-
ing topology of thinning-based medial manifolds is not always related to the
anatomy curvature (concavity-convexity pattern). A main advantage of GSM2
medial surfaces is that their branches are linked to the shape concavities due to
the geometrical and normalized nature of the operator. In this context, GSM2
manifolds can be simplified (pruned) ensuring that the loss of reconstruction
power will be minimum [43].

(a) (b)

Fig. 7: Impact of pruning in reconstructed volumes: medial manifolds (a) and
reconstructed volumes (b).

Finally, regarding computational efficiency, our method is up to 5 times
faster than thinning strategies. Unlike paralelization of topological strategies
which require special treatment of topological constrains [4,27], our code is
straightforward to parallelize, even on GPU. It follows that our method could
achieve the real-time speeds that clinical applications need.

The GSM2 medial map represents a clear improvement over NRM, showing
improved performance at manifold intersections while retaining the normalized
properties of NRM. However, the NMS step still limits the binarization to a
single direction around auto-intersections. Even if the medial map achieves
a uniform response at branches, binarization using NMS is likely to break
branch connectivity. The NMS step keeps points achieving a local maxima
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along a direction that represents the normal to medial surfaces. It follows that
NMS is consistent as far as surfaces have a well-defined unique normal vector
that can be computed by means of the structure tensor. Branches are loci
of surface self-intersections and, thus, their normal space is generated by the
normal vectors of the surface intersecting folds. This singular feature influences
the computation of NMS from both a theoretical and a practical point of view.
On one hand, from a theoretical point of view, the definition of NMS should
take into account multiple search directions at branching points. On the other
hand, the primary eigenvector of the structure tensor used to compute NMS
provides an average of the folds normal vectors. This average does not have
to be, in practice, perpendicular to any of the intersecting fold and, thus, the
ridge map is unlikely to attain a maximum in that direction. This represents
a limitation at auto-intersections, which might present small holes due to a
wrong direction for NMS. We are currently improving NMS binarization by
adding multiple directions for local maxima search.

Future work also includes the use of the medial surfaces computed using
our methods as basis for shape parametrization [52], in order to construct
anatomy-based reference systems for implicit registration and localization of
pathologies. Further, we will explore correspondences between medial repre-
sentations of neighboring organs to define inter-organ relations in a more ex-
haustive way than simply using centroid and pose parameters [24,25,50].
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