|
Debora Gil, & Petia Radeva. (2004). "Shape Restoration via a Regularized Curvature Flow " . Journal of Mathematical Imaging and Vision, 21(3), 205–223.
Abstract: Any image filtering operator designed for automatic shape restoration should satisfy robustness (whatever the nature and degree of noise is) as well as non-trivial smooth asymptotic behavior. Moreover, a stopping criterion should be determined by characteristics of the evolved image rather than dependent on the number of iterations. Among the several PDE based techniques, curvature flows appear to be highly reliable for strongly noisy images compared to image diffusion processes.
In the present paper, we introduce a regularized curvature flow (RCF) that admits non-trivial steady states. It is based on a measure of the local curve smoothness that takes into account regularity of the curve curvature and serves as stopping term in the mean curvature flow. We prove that this measure decreases over the orbits of RCF, which endows the method with a natural stop criterion in terms of the magnitude of this measure. Further, in its discrete version it produces steady states consisting of piece-wise regular curves. Numerical experiments made on synthetic shapes corrupted with different kinds of noise show the abilities and limitations of each of the current geometric flows and the benefits of RCF. Finally, we present results on real images that illustrate the usefulness of the present approach in practical applications.
|
|
|
Katerine Diaz, Jesus Martinez del Rincon, Aura Hernandez-Sabate, Marçal Rusiñol, & Francesc J. Ferri. (2018). "Fast Kernel Generalized Discriminative Common Vectors for Feature Extraction " . Journal of Mathematical Imaging and Vision, 60(4), 512–524.
Abstract: This paper presents a supervised subspace learning method called Kernel Generalized Discriminative Common Vectors (KGDCV), as a novel extension of the known Discriminative Common Vectors method with Kernels. Our method combines the advantages of kernel methods to model complex data and solve nonlinear
problems with moderate computational complexity, with the better generalization properties of generalized approaches for large dimensional data. These attractive combination makes KGDCV specially suited for feature extraction and classification in computer vision, image processing and pattern recognition applications. Two different approaches to this generalization are proposed, a first one based on the kernel trick (KT) and a second one based on the nonlinear projection trick (NPT) for even higher efficiency. Both methodologies
have been validated on four different image datasets containing faces, objects and handwritten digits, and compared against well known non-linear state-of-art methods. Results show better discriminant properties than other generalized approaches both linear or kernel. In addition, the KGDCV-NPT approach presents a considerable computational gain, without compromising the accuracy of the model.
|
|
|
Katerine Diaz, Jesus Martinez del Rincon, Marçal Rusiñol, & Aura Hernandez-Sabate. (2019). "Feature Extraction by Using Dual-Generalized Discriminative Common Vectors " . Journal of Mathematical Imaging and Vision, 61(3), 331–351.
Abstract: In this paper, a dual online subspace-based learning method called dual-generalized discriminative common vectors (Dual-GDCV) is presented. The method extends incremental GDCV by exploiting simultaneously both the concepts of incremental and decremental learning for supervised feature extraction and classification. Our methodology is able to update the feature representation space without recalculating the full projection or accessing the previously processed training data. It allows both adding information and removing unnecessary data from a knowledge base in an efficient way, while retaining the previously acquired knowledge. The proposed method has been theoretically proved and empirically validated in six standard face recognition and classification datasets, under two scenarios: (1) removing and adding samples of existent classes, and (2) removing and adding new classes to a classification problem. Results show a considerable computational gain without compromising the accuracy of the model in comparison with both batch methodologies and other state-of-art adaptive methods.
Keywords: Online feature extraction; Generalized discriminative common vectors; Dual learning; Incremental learning; Decremental learning
|
|
|
Debora Gil, Jose Maria-Carazo, & Roberto Marabini. (2006). "On the nature of 2D crystal unbending " . Journal of Structural Biology, 156(3), 546–555.
Abstract: Crystal unbending, the process that aims to recover a perfect crystal from experimental data, is one of the more important steps in electron crystallography image processing. The unbending process involves three steps: estimation of the unit cell displacements from their ideal positions, extension of the deformation field to the whole image and transformation of the image in order to recover an ideal crystal. In this work, we present a systematic analysis of the second step oriented to address two issues. First, whether the unit cells remain undistorted and only the distance between them should be changed (rigid case) or should be modified with the same deformation suffered by the whole crystal (elastic case). Second, the performance of different extension algorithms (interpolation versus approximation) is explored. Our experiments show that there is no difference between elastic and rigid cases or among the extension algorithms. This implies that the deformation fields are constant over large areas. Furthermore, our results indicate that the main source of error is the transformation of the crystal image.
Keywords: Electron microscopy
|
|
|
Enric Marti, J.Roncaries, Debora Gil, Aura Hernandez-Sabate, Antoni Gurgui, & Ferran Poveda. (2015). "PBL On Line: A proposal for the organization, part-time monitoring and assessment of PBL group activities " . Journal of Technology and Science Education, 5(2), 87–96.
|
|
|
Carles Sanchez, Oriol Ramos Terrades, Patricia Marquez, Enric Marti, J.Roncaries, & Debora Gil. (2015). "Automatic evaluation of practices in Moodle for Self Learning in Engineering " . Journal of Technology and Science Education, 5(2), 97–106.
|
|
|
Marta Diez-Ferrer, Debora Gil, Elena Carreño, Susana Padrones, & Samantha Aso. (2017). Positive Airway Pressure-Enhanced CT to Improve Virtual Bronchoscopic Navigation . Journal of Thoracic Oncology, 12(1S), S596–S597.
Abstract: A main weakness of virtual bronchoscopic navigation (VBN) is unsuccessful segmentation of distal branches approaching peripheral pulmonary nodules (PPN). CT scan acquisition protocol is pivotal for segmentation covering the utmost periphery. We hypothesize that application of continuous positive airway pressure (CPAP) during CT acquisition could improve visualization and segmentation of peripheral bronchi. The purpose of the present pilot study is to compare quality of segmentations under 4 CT acquisition modes: inspiration (INSP), expiration (EXP) and both with CPAP (INSP-CPAP and EXP-CPAP).
Keywords: Thorax CT; diagnosis; Peripheral Pulmonary Nodule
|
|
|
Antoni Rosell, Sonia Baeza, S. Garcia-Reina, JL. Mate, Ignasi Guasch, I. Nogueira, et al. (2022). EP01.05-001 Radiomics to Increase the Effectiveness of Lung Cancer Screening Programs. Radiolung Preliminary Results . Journal of Thoracic Oncology, 17(9), S182.
|
|
|
Katerine Diaz, Jesus Martinez del Rincon, & Aura Hernandez-Sabate. (2017). "Decremental generalized discriminative common vectors applied to images classification " . Knowledge-Based Systems, 131, 46–57.
Abstract: In this paper, a novel decremental subspace-based learning method called Decremental Generalized Discriminative Common Vectors method (DGDCV) is presented. The method makes use of the concept of decremental learning, which we introduce in the field of supervised feature extraction and classification. By efficiently removing unnecessary data and/or classes for a knowledge base, our methodology is able to update the model without recalculating the full projection or accessing to the previously processed training data, while retaining the previously acquired knowledge. The proposed method has been validated in 6 standard face recognition datasets, showing a considerable computational gain without compromising the accuracy of the model.
Keywords: Decremental learning; Generalized Discriminative Common Vectors; Feature extraction; Linear subspace methods; Classification
|
|
|
Katerine Diaz, Francesc J. Ferri, & Aura Hernandez-Sabate. (2018). "An overview of incremental feature extraction methods based on linear subspaces " . Knowledge-Based Systems, 145, 219–235.
Abstract: With the massive explosion of machine learning in our day-to-day life, incremental and adaptive learning has become a major topic, crucial to keep up-to-date and improve classification models and their corresponding feature extraction processes. This paper presents a categorized overview of incremental feature extraction based on linear subspace methods which aim at incorporating new information to the already acquired knowledge without accessing previous data. Specifically, this paper focuses on those linear dimensionality reduction methods with orthogonal matrix constraints based on global loss function, due to the extensive use of their batch approaches versus other linear alternatives. Thus, we cover the approaches derived from Principal Components Analysis, Linear Discriminative Analysis and Discriminative Common Vector methods. For each basic method, its incremental approaches are differentiated according to the subspace model and matrix decomposition involved in the updating process. Besides this categorization, several updating strategies are distinguished according to the amount of data used to update and to the fact of considering a static or dynamic number of classes. Moreover, the specific role of the size/dimension ratio in each method is considered. Finally, computational complexity, experimental setup and the accuracy rates according to published results are compiled and analyzed, and an empirical evaluation is done to compare the best approach of each kind.
|
|