toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links (up)
Author Christophe Rigaud; Dimosthenis Karatzas; Joost Van de Weijer; Jean-Christophe Burie; Jean-Marc Ogier edit   pdf
doi  openurl
  Title An active contour model for speech balloon detection in comics Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1240-1244  
  Keywords  
  Abstract Comic books constitute an important cultural heritage asset in many countries. Digitization combined with subsequent comic book understanding would enable a variety of new applications, including content-based retrieval and content retargeting. Document understanding in this domain is challenging as comics are semi-structured documents, combining semantically important graphical and textual parts. Few studies have been done in this direction. In this work we detail a novel approach for closed and non-closed speech balloon localization in scanned comic book pages, an essential step towards a fully automatic comic book understanding. The approach is compared with existing methods for closed balloon localization found in the literature and results are presented.  
  Address washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; CIC; 600.056 Approved no  
  Call Number Admin @ si @ RKW2013a Serial 2260  
Permanent link to this record
 

 
Author Marçal Rusiñol; T.Benkhelfallah; V. Poulain d'Andecy edit   pdf
doi  openurl
  Title Field Extraction from Administrative Documents by Incremental Structural Templates Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1100 - 1104  
  Keywords  
  Abstract In this paper we present an incremental framework aimed at extracting field information from administrative document images in the context of a Digital Mail-room scenario. Given a single training sample in which the user has marked which fields have to be extracted from a particular document class, a document model representing structural relationships among words is built. This model is incrementally refined as the system processes more and more documents from the same class. A reformulation of the tf-idf statistic scheme allows to adjust the importance weights of the structural relationships among words. We report in the experimental section our results obtained with a large dataset of real invoices.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.56; 600.045; 605.203; 602.101 Approved no  
  Call Number Admin @ si @ RBP2013 Serial 2346  
Permanent link to this record
 

 
Author Dimosthenis Karatzas; Faisal Shafait; Seiichi Uchida; Masakazu Iwamura; Lluis Gomez; Sergi Robles; Joan Mas; David Fernandez; Jon Almazan; Lluis Pere de las Heras edit   pdf
doi  openurl
  Title ICDAR 2013 Robust Reading Competition Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1484-1493  
  Keywords  
  Abstract This report presents the final results of the ICDAR 2013 Robust Reading Competition. The competition is structured in three Challenges addressing text extraction in different application domains, namely born-digital images, real scene images and real-scene videos. The Challenges are organised around specific tasks covering text localisation, text segmentation and word recognition. The competition took place in the first quarter of 2013, and received a total of 42 submissions over the different tasks offered. This report describes the datasets and ground truth specification, details the performance evaluation protocols used and presents the final results along with a brief summary of the participating methods.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.056 Approved no  
  Call Number Admin @ si @ KSU2013 Serial 2318  
Permanent link to this record
 

 
Author Anjan Dutta; Josep Llados; Horst Bunke; Umapada Pal edit   pdf
doi  openurl
  Title Near Convex Region Adjacency Graph and Approximate Neighborhood String Matching for Symbol Spotting in Graphical Documents Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1078-1082  
  Keywords  
  Abstract This paper deals with a subgraph matching problem in Region Adjacency Graph (RAG) applied to symbol spotting in graphical documents. RAG is a very important, efficient and natural way of representing graphical information with a graph but this is limited to cases where the information is well defined with perfectly delineated regions. What if the information we are interested in is not confined within well defined regions? This paper addresses this particular problem and solves it by defining near convex grouping of oriented line segments which results in near convex regions. Pure convexity imposes hard constraints and can not handle all the cases efficiently. Hence to solve this problem we have defined a new type of convexity of regions, which allows convex regions to have concavity to some extend. We call this kind of regions Near Convex Regions (NCRs). These NCRs are then used to create the Near Convex Region Adjacency Graph (NCRAG) and with this representation we have formulated the problem of symbol spotting in graphical documents as a subgraph matching problem. For subgraph matching we have used the Approximate Edit Distance Algorithm (AEDA) on the neighborhood string, which starts working after finding a key node in the input or target graph and iteratively identifies similar nodes of the query graph in the neighborhood of the key node. The experiments are performed on artificial, real and distorted datasets.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.045; 600.056; 600.061; 601.152 Approved no  
  Call Number Admin @ si @ DLB2013a Serial 2358  
Permanent link to this record
 

 
Author Jon Almazan; Alicia Fornes; Ernest Valveny edit   pdf
doi  openurl
  Title A Deformable HOG-based Shape Descriptor Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1022-1026  
  Keywords  
  Abstract In this paper we deal with the problem of recognizing handwritten shapes. We present a new deformable feature extraction method that adapts to the shape to be described, dealing in this way with the variability introduced in the handwriting domain. It consists in a selection of the regions that best define the shape to be described, followed by the computation of histograms of oriented gradients-based features over these points. Our results significantly outperform other descriptors in the literature for the task of hand-drawn shape recognition and handwritten word retrieval  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ AFV2013 Serial 2326  
Permanent link to this record
 

 
Author Francisco Cruz; Oriol Ramos Terrades edit   pdf
doi  openurl
  Title Handwritten Line Detection via an EM Algorithm Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 718-722  
  Keywords  
  Abstract In this paper we present a handwritten line segmentation method devised to work on documents composed of several paragraphs with multiple line orientations. The method is based on a variation of the EM algorithm for the estimation of a set of regression lines between the connected components that compose the image. We evaluated our method on the ICDAR2009 handwriting segmentation contest dataset with promising results that overcome most of the presented methods. In addition, we prove the usability of the presented method by performing line segmentation on the George Washington database obtaining encouraging results.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ CrT2013 Serial 2329  
Permanent link to this record
 

 
Author Albert Gordo; Marçal Rusiñol; Dimosthenis Karatzas; Andrew Bagdanov edit   pdf
doi  openurl
  Title Document Classification and Page Stream Segmentation for Digital Mailroom Applications Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 621-625  
  Keywords  
  Abstract In this paper we present a method for the segmentation of continuous page streams into multipage documents and the simultaneous classification of the resulting documents. We first present an approach to combine the multiple pages of a document into a single feature vector that represents the whole document. Despite its simplicity and low computational cost, the proposed representation yields results comparable to more complex methods in multipage document classification tasks. We then exploit this representation in the context of page stream segmentation. The most plausible segmentation of a page stream into a sequence of multipage documents is obtained by optimizing a statistical model that represents the probability of each segmented multipage document belonging to a particular class. Experimental results are reported on a large sample of real administrative multipage documents.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.056; 602.101 Approved no  
  Call Number Admin @ si @ GRK2013c Serial 2345  
Permanent link to this record
 

 
Author David Aldavert; Marçal Rusiñol; Ricardo Toledo; Josep Llados edit   pdf
doi  openurl
  Title Integrating Visual and Textual Cues for Query-by-String Word Spotting Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 511 - 515  
  Keywords  
  Abstract In this paper, we present a word spotting framework that follows the query-by-string paradigm where word images are represented both by textual and visual representations. The textual representation is formulated in terms of character $n$-grams while the visual one is based on the bag-of-visual-words scheme. These two representations are merged together and projected to a sub-vector space. This transform allows to, given a textual query, retrieve word instances that were only represented by the visual modality. Moreover, this statistical representation can be used together with state-of-the-art indexation structures in order to deal with large-scale scenarios. The proposed method is evaluated using a collection of historical documents outperforming state-of-the-art performances.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; ADAS; 600.045; 600.055; 600.061 Approved no  
  Call Number Admin @ si @ ART2013 Serial 2224  
Permanent link to this record
 

 
Author Andreas Fischer; Volkmar Frinken; Horst Bunke; Ching Y. Suen edit   pdf
doi  openurl
  Title Improving HMM-Based Keyword Spotting with Character Language Models Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 506-510  
  Keywords  
  Abstract Facing high error rates and slow recognition speed for full text transcription of unconstrained handwriting images, keyword spotting is a promising alternative to locate specific search terms within scanned document images. We have previously proposed a learning-based method for keyword spotting using character hidden Markov models that showed a high performance when compared with traditional template image matching. In the lexicon-free approach pursued, only the text appearance was taken into account for recognition. In this paper, we integrate character n-gram language models into the spotting system in order to provide an additional language context. On the modern IAM database as well as the historical George Washington database, we demonstrate that character language models significantly improve the spotting performance.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.045; 605.203 Approved no  
  Call Number Admin @ si @ FFB2013 Serial 2295  
Permanent link to this record
 

 
Author Lluis Gomez; Dimosthenis Karatzas edit   pdf
doi  openurl
  Title Multi-script Text Extraction from Natural Scenes Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 467-471  
  Keywords  
  Abstract Scene text extraction methodologies are usually based in classification of individual regions or patches, using a priori knowledge for a given script or language. Human perception of text, on the other hand, is based on perceptual organisation through which text emerges as a perceptually significant group of atomic objects. Therefore humans are able to detect text even in languages and scripts never seen before. In this paper, we argue that the text extraction problem could be posed as the detection of meaningful groups of regions. We present a method built around a perceptual organisation framework that exploits collaboration of proximity and similarity laws to create text-group hypotheses. Experiments demonstrate that our algorithm is competitive with state of the art approaches on a standard dataset covering text in variable orientations and two languages.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.056; 601.158; 601.197 Approved no  
  Call Number Admin @ si @ GoK2013 Serial 2310  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: