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Abstract—This paper deals with a subgraph matching problem
in Region Adjacency Graph (RAG) applied to symbol spotting
in graphical documents. RAG is a very important, efficient and
natural way of representing graphical information with a graph
but this is limited to cases where the information is well defined
with perfectly delineated regions. What if the information we
are interested in is not confined within well defined regions? This
paper addresses this particular problem and solves it by defining
near convex grouping of oriented line segments which results in
near convex regions. Pure convexity imposes hard constraints and
can not handle all the cases efficiently. Hence to solve this problem
we have defined a new type of convexity of regions, which allows
convex regions to have concavity to some extend. We call this
kind of regions Near Convex Regions (NCRs). These NCRs are
then used to create the Near Convex Region Adjacency Graph
(NCRAG) and with this representation we have formulated
the problem of symbol spotting in graphical documents as a
subgraph matching problem. For subgraph matching we have
used the Approximate Edit Distance Algorithm (AEDA) on the
neighborhood string, which starts working after finding a key
node in the input or target graph and iteratively identifies similar
nodes of the query graph in the neighborhood of the key node.
The experiments are performed on artificial, real and distorted
datasets.

Index Terms—Near Convex Region Adjacency Graph, Sub-
graph Matching, Approximate Edit Distance Algorithm, Symbol
Spotting, Graphics Recognition.

I. INTRODUCTION

Symbol spotting in graphical documents is an important
problem in the graphics recognition community. There are
many methods that have been proposed to solve the prob-
lem. The interested readers are referred to [1] for a recent
and detailed literature review. Many of the methods have
proposed some sort of subgraph matching as the solution,
where smaller graphs represent the query symbols and the
larger graphs represent the graphical documents. Often this
kind of methods use the Region Adjacency Graph (RAG) as
the way of representing graphical information [2]–[4], where
a region is roughly defined as a white connected component.
This is well justified since RAG allows to capture regionwise
contextual information. RAG has also been widely used for
classification [5] and object detection and recognition [6],

[7] in other fields of computer vision. The main advantage
of RAG is that it is natural and robust, and allows one to
capture regionwise contextual information. But it is not always
representative when the region boundaries are not clearly
defined or they have some discontinuities (as in the symbol
door1 and door2 respectively in Fig. 1a and Fig. 1b and
in the synthetically distorted example of symbol table1 in
Fig. 1d). So to solve these problems, in this paper we define
Near Convex Region Adjacency Graph (NCRAG) where the
regions must not be clearly and continuously bounded, but
can be nearly convex. This is done by near convex grouping
of the oriented line segments and defining the convexity of
the regions. Then we use this NCRAG representation to solve
the problem of subgraph matching and apply it for symbol
spotting in graphical documents. The first step of the method
is to create two NCRAGs, one from a graphical document and
the other from a symbol and then in the second step apply the
Approximate Edit Distance Algorithm (AEDA) for subgraph
matching.

(a) (b) (c) (d)

Fig. 1: Limitations of RAG and convex region based rep-
resentation: (a) the symbol door1 contains open region, (b)
the symbol door2 also contains open regions, (c) the symbol
bed contains a region (region 1) which is not convex, (d) the
symbol table1 contains discontinuous boundaries.

Convexity of objects is a very important property and it
has been shown that most of the objects, even though they
are not fully convex, can be decomposed into multiple convex
parts [8]. Also it is important to note that often the object
of interest is almost convex. So the property of convexity



has already been studied in the field of computer vision and
pattern recognition for object detection and recognition [9]
and recently it has also been studied in document analysis for
symbol spotting [3], [4], [10]. But, as it has been mentioned
before, the object of interest might not always be perfectly
convex but include some concavity in some parts (as the region
1 of the symbol bed in Fig. 1c). Of course, such regions can be
split into multiple strictly convex parts as it is studied in [7],
[8] but it is inefficient dealing with a large number of smaller
purely convex parts rather than few near convex parts. Also
small concavity provides discrimination in the representation
of objects, so it is an important property to be considered
for description. Convexity or near convex decomposition has
also been studied in [11] very recently. Hence representing
the graphical documents with NCRAG seems worthwhile and
useful.

The main contributions of the present paper are: (1) For-
mulation of NCRs using the near convex grouping of a set
of oriented line segments which not necessarily have to be
closed and the use of these NCRs to construct the NCRAGs.
This NCRAG is able to handle concavity within the convex
regions and at the same time it is as expressive as RAG.
(2) Application of the Approximate Edit Distance Algorithm
(AEDA) [12] to solve the problem of subgraph matching for
faster symbol spotting in graphical documents. The method
does not need any learning or offline step and can be computed
in reasonable time as shown in Table I and Table II.

The rest of the paper is organized into four sections. In
Section II we explain the detailed methodology. Section III
shows the experimental results of the paper. In Section IV we
provide a detailed discussion about limitations of this kind
of representation and compare the results with a previously
proposed method and note the improvements. At last in
Section V we conclude the paper and discuss future directions
of work.

II. METHODOLOGY

The first step of the method is to create two NCRAGs,
one from the target graphical document and the other from
the query symbol. Formally we define an NCRAG as a graph
G = (V,E, φ, ψ), where V is the set of nodes and E ⊆ V ×V
is the set of edges of the graph G and are defined as follows:

V = {vi : vi is a convex region (nearly) in the document}

E = {(vi, vj) : vi, vj ∈ V and vi, vj are adjacent regions}

φ : V → Rn is the node labeling function, in this case, the Hu
moments invariants concatenated with the Euler number and
solidity of each of the regions. Therefore, the node label has
the dimension nine and all values are normalized between 0
and 1. ψ : E → R is the edge labeling function, in this case,
the ratio of the length of the common boundary to the length
of the larger boundary between the two regions connecting the
edge. Given two NCRAGs, the symbol spotting problem can
be formulated as a subgraph matching problem, where the task
is to find an instance of the smaller query symbol graph in the

larger document graph. Let us denote the NCRAG of the query
symbol as the query graph GQ and that of the document as
the input or target graph GI . As the second step, for matching
the subgraph we have used the efficient AEDA proposed by
Neuhaus and Bunke in [12]. These two steps are explained in
the subsequent subsections.

(a) (b) (c)

Fig. 2: NCRAG representing (a) a part of a floorplan, (b) a
symbol with open region (door1), (c) a symbol with all closed
regions (armchair).

A. Near Convex Region Adjacency Graph (NCRAG)
This step starts working on the vectorized images which

contain the approximated line segments. Here each line seg-
ment is considered as two oriented line segments where an
oriented line segment is defined as a line segment where one
endpoint is considered as its first endpoint [8]. If li is an ori-
ented line segment, then we consider li,1 as it’s first endpoint
and li,2 is its second. Let us consider their coordinates as
(xi1, yi1) and (xi2, yi2) respectively. Just to clarify, if li and
lj are two consecutive oriented line segments coinciding end-
to-end then the coordinate (xi2, yi2) and (xj1, yj) denote the
coordinates of the same point. Now let Sn = {l1, l2, . . . , ln}
be a sequence of oriented line segments and Li be the length
of the segment li and γi be the gap between li,2 and li+1,1.
Then according to the original algorithm [8] we have:

Li,n =

n∑
i=1

Li, γi,n =

n∑
i=1

γi (1)

The saliency measurement of the convex group Sn can be
defined as:

Saliency(Sn) =
Li,n

Li,n + γi,n
(2)

The saliency parameter helps to incorporate the erroneous gaps
that might be generated during binarization or vectorization as
we have shown in one of our experiments in Section III. Before
adding any oriented line segment to a sequence, the saliency
measurement of the sequence is checked. In case the saliency
of the sequence is less than tsal the current line segment is
added to the sequence.

The convexity of the group Sn is defined as:

Convexity(Sn) =
area(Sn)

area(CHSn)
(3)

where CHSn is the convex hull of Sn. Since any group Sn

is not guaranteed to be closed, its area is computed as:

area(Sn) =

∑n
i=1(xi1yi2 − xi2yi1) + (xi2y((i+1)%n)2 − x((i+1)%n)1yi2)

2
.

(4)



Like the saliency measurement, before adding any oriented
line segment to a sequence Sn, its convexity together with
Sn is checked and if it is less than tconv , it is added to the
sequence.

To make the idea clear it is to be mentioned that for efficient
computation, for each oriented line segment li, the original
algorithm precomputes the list of all other oriented line
segments List(li) with which it is mutually convex and sorts
them according to the distance. Secondly, it also precomputes
the angle that is turned when going from one oriented line
segment to another. Since we take into account the convexity
of a sequence Sn we only sort the list according to the distance
and check the saliency and convexity of the current sequence
together with the line segment to be added before adding it to
Sn. These NCRs are then used to create NCRAG. Fig. 2 shows
some results of the NCRAG construction. Construction of the
NCRAG can be done in time complexity of O(m2logm+m2),
where m is the number of oriented line segments.

B. Approximate Edit Distance Algorithm (AEDA)

The AEDA starts by finding a similar node in GI to a
node in GQ. These nodes are called the key nodes [12].
The similarity of the nodes is inversely proportional to the
Euclidean distance of the node labels, and the edge labels of
the graph are not taken into account here. Then the algorithm
looks at the neighborhood nodes considering the key nodes as
the center nodes. The neighborhood nodes are then arranged
in clockwise order to create a string. Here the connectivity
information between the neighborhood nodes is taken into
account. If any two nodes are connected the corresponding
edge label is concatenated with the incident node label and
form the attributed string. After having constructed the at-
tributed string, cyclic string edit distance is applied to get the
node-to-node correspondences. Then each of the nodes in each
correspondence is considered as a key node and the previous
steps are repeated. This algorithm continues working until it
gets new correspondences. In the cyclic string the edge label
is augmented with the originating node and the cost function
is defined as:

λ |φ1 − φ2|+ (1− λ) |ψ1 − ψ2| , where 0 ≤ λ ≤ 1.

where φ and ψ are, respectively, the node and edge labels. For
the original algorithm the readers are referred to [12].

For each node in GQ we consider n key nodes in GI and
perform the AEDA. Therefore for a single query graph GQ,
we perform n×m iterations of the AEDA in GI , where m is
the number of nodes in GQ. In this case, n should be greater
than the actual number of instances of the query symbol in
a graphical document to get all the relevant instances. Here
it is to be mentioned that greater values of n might produce
more false positives but the system produces a ranked list of
the relevant retrievals. So it does not hamper the performance,
since the true positives suppose to appear at the beginning
of the ranked list of retrieved symbols. The edge label is only
used when we perform the cyclic string matching on the strings
obtained from the neighborhood subgraphs by considering the

nodes in clockwise order. At the end, we obtain a distance
measure between a retrieved subgraph and the query graph by
calculating the distance of the node labels. Later we use this
distance to rank the retrieved subgraphs.

(a) (b) (c) (d) (e) (f)

Fig. 3: Model symbols: (a)-(e) SESYD, (f) FPLAN-POLY:
(a) armchair, (b) bed, (c) door1, (d) door2, (e) table2, (f)
television.

Fig. 4: First eight retrievals of armchair.

Fig. 5: First eight retrievals of bed.

Fig. 6: First eight retrievals of door1.

Fig. 7: First eight retrievals of television.

III. EXPERIMENTAL RESULTS

Experiments are carried out to show (1) the robustness of
the algorithm for constructing NCRAG and (2) the efficiency
of the AEDA for subgraph matching in NCRAG. We have
considered two different datasets: (1) SESYD (floorplans)1

and (2) FPLAN-POLY2 for experiments. SESYD (floorplans)
contains a set of synthetic floorplans and FPLAN-POLY
contains a set of real floorplans. Both datasets contain different
kind of query symbols, for example, symbols with closed and
open regions, and symbols having slightly concave regions.
The set of available query symbols for each dataset are used
as query to evaluate with the ground truth. The graphical

1http://mathieu.delalandre.free.fr/projects/sesyd/
2http://www.cvc.uab.es/ marcal/FPLAN-POLY/index.html



documents as well as the query symbols are available as
binary images. To get the line segments, the vectorization
algorithm of Qgar3 is applied. For each of the symbols the
performance of the algorithm is evaluated in terms of precision
(P), recall (R) and average precision (AveP). To have an idea
about the computation time we calculate the per document
retrieval time (T) required for each of the symbols with each
document. For each of the datasets the mean of the above
mentioned metrics is shown (Table I) to judge the overall
performance of the algorithm. Throughout our experiments we
have chosen tsal = 0.95, tconv = 0.8 and λ = 0.6; we run a
set experiments varying these parameters, then the best values
for these parameters are chosen to give the best performance.
The detailed experiments for choosing these parameters are
beyond the size of the paper.
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Fig. 9: Precision recall curve for different dataset.

A. Experiments on SESYD
This dataset contains 10 different subsets, each of which

contains 100 synthetically generated floorplans. All the floor-
plans in a subdatasets are created upon a same floorplan
template by putting different model symbols in different places
in random orientation and scale. In this experiment we have
only considered a subset of 100 images (floorplans16-01).
Each of the NCRAGs of each of the floorplans approximately
contains 150 NCRs, whereas each of the query symbols
contains 3-6 NCRs. The quantitative results are shown in the
first row of Table I. The high recall values for this dataset show
that the algorithm works pretty well for most of the symbols.
There are some cases of failure or partial detection, the reason
of which will be discussed in Section IV. Qualitative results
are shown in Figs. 4 to 6, which, respectively, include symbols
with closed, near convex and open regions.

B. Experiments on FPLAN-POLY
This dataset contains 42 real floorplans, each being part of

a real floorplan. The images contain distortions, text-graphic

3www.qgar.com

interference, etc. Here we have used all the floorplans and 10
randomly chosen model symbols. In this dataset each floorplan
image contains approximately 110 NCRs, whereas a query
symbol contains 4-8 NCRs. The recall value obtained in this
dataset is also very good which is shown in Table I. Qualitative
results of querying television are shown in Fig. 7 (note the
disappearance of some boundaries). The results obtained in
this dataset is slightly better than SESYD. The reason is
mentioned in the discussions part (Section IV). The parameter
tsal has less influence on SESYD and FPLAN-POLY dataset,
since the line segments are end-to-end coinciding.

C. Experiments on SESYD with discontinuous edges

This experiment is performed to prove the robustness of
the algorithm constructing the NCRAG. To do that we have
taken the same subset of SESYD and randomly drawn white
horizontal lines of 2-3 pixels width. This generates random
discontinuity of black pixels. After vectorizing the image we
apply the algorithm to spot the symbol on it. The quantitative
and qualitative results are respectively shown in the Table I
(3rd row) and Fig. 8 (note the white gaps on the black edges).
Here the parameter tsal poses an important role and to be tuned
according to the existing gap in edges. The method fails when
the drawn white lines remove substantial portion of a symbol.
The precision recall curve (Fig. 9) shows the performance of
the method for these three datasets, from that it is clear that
the method performs worse in case of the discontinuous edges
than the other two.

TABLE I: Dataset wise mean results with NCRAG represen-
tation.

Symbol P R F AveP T (secs)
SESYD (floorplans16-01) 62.33 95.67 74.76 70.66 0.57
FPLAN-POLY 64.56 96.32 76.21 73.68 0.65
SESYD (discont.) 56.33 91.75 70.81 64.65 0.59

IV. DISCUSSION

Although NCRAG is capable of capturing contextual in-
formation well in terms of regions, there are some serious
limitations of NCRAG or, more generally, of the RAG based
representation. One problem is shown in Fig. 10, where
there are two symbols called sink3 and sink4 and the dif-
ference between them when they appear in a model symbol
(Fig. 10(a),(c)) and in a document (Fig. 10(b),(d)). This is due
to the difference in stroke width in images. Particularly, in the
example of sink3 when it appears in the document it looses the
thin peripheral portion in the left of the region and also small
circular part detaches the upper right corner part of the square.
These create some difference in the regions but apparently they
appear the same with our high level vision. The dissimilarity
in regions also changes the NCRAG representation. As a result
it partially finds some nodes of a graph and results in partial
detection or complete loss. Hence it lowers the similarity
score and precision. Since in FPLAN-POLY the query symbol
is generated by cropping the floorplan image, there is no



Fig. 8: First 10 retrievals of table2 on the database of floorplans having discontinuous line noise.

discrepancy like that. This explains the slight better results
in FPLAN-POLY.

(a) (b) (c) (d)

Fig. 10: Limitations of region based representation: (a) model
symbol of sink3, (b) sink3 as it appears in the document, (c)
model symbol of sink4, (d) sink4 as it appears in the document.

TABLE II: Comparison between a state-of-the-art method and
the current method.

Symbol P R F AveP T (secs)
Dutta et al. [1] 41.33 82.66 51.24 52.46 0.07
Current method 62.33 95.67 74.76 70.66 0.57

As we have used the same dataset (floorplans16-01 of
SESYD) as the method proposed in [1], we can do a direct
comparison between the results. Table II shows the results
obtained by these two methods. Clearly the NCRAG based
representation improves the performance remarkably. This was
expected since this kind of representation takes into account
contextual information. But at the same time it has some
limitations as explained above. Also the time complexity of
the proposed method is quite high compared to the other
one. Since [1] uses an indexation technique of the serialized
subgraphical structure, the online part of the method is quite
fast. But it is to be noted that the method needs an offline steps
to create the indexation or hash table. The interested readers
are referred to [1] for detailed comparisons of different symbol
spotting methods.

V. CONCLUSION AND FUTURE WORKS

In this paper we have proposed a near convex grouping
approach to create NCRAG on graphical documents. Then this
representation has been used for spotting symbols on graphical
documents with the application of the efficient AEDA. We
have shown the results of the proposed method on three
different sets of images and the results obtained are quite
satisfactory. We have also compared results with a previously
proposed method and noticed the methodological differences
and performance improvement. At the end we have shown
some limitations of this kind of region based representation.

From the experimental results it is clear that this kind
of region based representation is very robust despite having
some limitations and higher time complexity. In the past
we have seen that hashing or indexation of the graphical
structure can make the online part really fast. So, in future,
it would be interesting to investigate region based indexation
techniques. Apart from that it would be worth to investigate
an improvement of NCRAG that could handle the above
mentioned limitations. The detailed performance comparison
of the improved version of the current method with the other
existing methods will also be done in future.
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