toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Hongxing Gao; Marçal Rusiñol; Dimosthenis Karatzas; Josep Llados; Tomokazu Sato; Masakazu Iwamura; Koichi Kise edit   pdf
doi  openurl
  Title Key-region detection for document images -applications to administrative document retrieval Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 230-234  
  Keywords  
  Abstract In this paper we argue that a key-region detector designed to take into account the special characteristics of document images can result in the detection of less and more meaningful key-regions. We propose a fast key-region detector able to capture aspects of the structural information of the document, and demonstrate its efficiency by comparing against standard detectors in an administrative document retrieval scenario. We show that using the proposed detector results to a smaller number of detected key-regions and higher performance without any drop in speed compared to standard state of the art detectors.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.056; 600.045 Approved no  
  Call Number Admin @ si @ GRK2013b Serial 2293  
Permanent link to this record
 

 
Author Andreas Fischer; Ching Y. Suen; Volkmar Frinken; Kaspar Riesen; Horst Bunke edit   pdf
doi  isbn
openurl 
  Title A Fast Matching Algorithm for Graph-Based Handwriting Recognition Type Conference Article
  Year 2013 Publication 9th IAPR – TC15 Workshop on Graph-based Representation in Pattern Recognition Abbreviated Journal  
  Volume 7877 Issue Pages 194-203  
  Keywords  
  Abstract The recognition of unconstrained handwriting images is usually based on vectorial representation and statistical classification. Despite their high representational power, graphs are rarely used in this field due to a lack of efficient graph-based recognition methods. Recently, graph similarity features have been proposed to bridge the gap between structural representation and statistical classification by means of vector space embedding. This approach has shown a high performance in terms of accuracy but had shortcomings in terms of computational speed. The time complexity of the Hungarian algorithm that is used to approximate the edit distance between two handwriting graphs is demanding for a real-world scenario. In this paper, we propose a faster graph matching algorithm which is derived from the Hausdorff distance. On the historical Parzival database it is demonstrated that the proposed method achieves a speedup factor of 12.9 without significant loss in recognition accuracy.  
  Address Vienna; Austria; May 2013  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-38220-8 Medium  
  Area Expedition Conference GBR  
  Notes DAG; 600.045; 605.203 Approved no  
  Call Number Admin @ si @ FSF2013 Serial 2294  
Permanent link to this record
 

 
Author Andreas Fischer; Volkmar Frinken; Horst Bunke; Ching Y. Suen edit   pdf
doi  openurl
  Title Improving HMM-Based Keyword Spotting with Character Language Models Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 506-510  
  Keywords  
  Abstract Facing high error rates and slow recognition speed for full text transcription of unconstrained handwriting images, keyword spotting is a promising alternative to locate specific search terms within scanned document images. We have previously proposed a learning-based method for keyword spotting using character hidden Markov models that showed a high performance when compared with traditional template image matching. In the lexicon-free approach pursued, only the text appearance was taken into account for recognition. In this paper, we integrate character n-gram language models into the spotting system in order to provide an additional language context. On the modern IAM database as well as the historical George Washington database, we demonstrate that character language models significantly improve the spotting performance.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.045; 605.203 Approved no  
  Call Number Admin @ si @ FFB2013 Serial 2295  
Permanent link to this record
 

 
Author Volkmar Frinken; Andreas Fischer; Carlos David Martinez Hinarejos edit   pdf
doi  isbn
openurl 
  Title Handwriting Recognition in Historical Documents using Very Large Vocabularies Type Conference Article
  Year 2013 Publication 2nd International Workshop on Historical Document Imaging and Processing Abbreviated Journal  
  Volume Issue Pages 67-72  
  Keywords  
  Abstract Language models are used in automatic transcription system to resolve ambiguities. This is done by limiting the vocabulary of words that can be recognized as well as estimating the n-gram probability of the words in the given text. In the context of historical documents, a non-unified spelling and the limited amount of written text pose a substantial problem for the selection of the recognizable vocabulary as well as the computation of the word probabilities. In this paper we propose for the transcription of historical Spanish text to keep the corpus for the n-gram limited to a sample of the target text, but expand the vocabulary with words gathered from external resources. We analyze the performance of such a transcription system with different sizes of external vocabularies and demonstrate the applicability and the significant increase in recognition accuracy of using up to 300 thousand external words.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4503-2115-0 Medium  
  Area Expedition Conference HIP  
  Notes DAG; 600.056; 600.045; 600.061; 602.006; 602.101 Approved no  
  Call Number Admin @ si @ FFM2013 Serial 2296  
Permanent link to this record
 

 
Author Antonio Clavelli; Dimosthenis Karatzas; Josep Llados; Mario Ferraro; Giuseppe Boccignone edit   pdf
url  doi
isbn  openurl
  Title Towards Modelling an Attention-Based Text Localization Process Type Conference Article
  Year 2013 Publication 6th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume 7887 Issue Pages 296-303  
  Keywords text localization; visual attention; eye guidance  
  Abstract This note introduces a visual attention model of text localization in real-world scenes. The core of the model built upon the proto-object concept is discussed. It is shown how such dynamic mid-level representation of the scene can be derived in the framework of an action-perception loop engaging salience, text information value computation, and eye guidance mechanisms.
Preliminary results that compare model generated scanpaths with those eye-tracked from human subjects are presented.
 
  Address Madeira; Portugal; June 2013  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-38627-5 Medium  
  Area Expedition Conference IbPRIA  
  Notes DAG Approved no  
  Call Number Admin @ si @ CKL2013 Serial 2291  
Permanent link to this record
 

 
Author Nuria Cirera; Alicia Fornes; Volkmar Frinken; Josep Llados edit   pdf
doi  isbn
openurl 
  Title Hybrid grammar language model for handwritten historical documents recognition Type Conference Article
  Year 2013 Publication 6th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume 7887 Issue Pages 117-124  
  Keywords  
  Abstract In this paper we present a hybrid language model for the recognition of handwritten historical documents with a structured syntactical layout. Using a hidden Markov model-based recognition framework, a word-based grammar with a closed dictionary is enhanced by a character sequence recognition method. This allows to recognize out-of-dictionary words in controlled parts of the recognition, while keeping a closed vocabulary restriction for other parts. While the current status is work in progress, we can report an improvement in terms of character error rate.  
  Address Madeira; Portugal; June 2013  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-38627-5 Medium  
  Area Expedition Conference IbPRIA  
  Notes DAG; 602.006; 600.045; 600.061 Approved no  
  Call Number Admin @ si @ CFF2013 Serial 2292  
Permanent link to this record
 

 
Author Hongxing Gao; Marçal Rusiñol; Dimosthenis Karatzas; Apostolos Antonacopoulos; Josep Llados edit   pdf
openurl 
  Title An interactive appearance-based document retrieval system for historical newspapers Type Conference Article
  Year 2013 Publication Proceedings of the International Conference on Computer Vision Theory and Applications Abbreviated Journal  
  Volume Issue Pages 84-87  
  Keywords  
  Abstract In this paper we present a retrieval-based application aimed at assisting a user to semi-automatically segment an incoming flow of historical newspaper images by automatically detecting a particular type of pages based on their appearance. A visual descriptor is used to assess page similarity while a relevance feedback process allow refining the results iteratively. The application is tested on a large dataset of digitised historic newspapers.  
  Address Barcelona; February 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference VISAPP  
  Notes DAG; 600.056; 600.045; 605.203 Approved no  
  Call Number Admin @ si @ GRK2013a Serial 2290  
Permanent link to this record
 

 
Author Albert Gordo edit  openurl
  Title A Cyclic Page Layout Descriptor for Document Classification & Retrieval Type Report
  Year 2009 Publication CVC Technical Report Abbreviated Journal  
  Volume 128 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Computer Vision Center Thesis Master's thesis  
  Publisher Place of Publication Bellaterra, Barcelona Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CIC;DAG Approved no  
  Call Number Admin @ si @ Gor2009 Serial 2387  
Permanent link to this record
 

 
Author Jaume Gibert; Ernest Valveny; Horst Bunke edit   pdf
doi  openurl
  Title Embedding of Graphs with Discrete Attributes Via Label Frequencies Type Journal Article
  Year 2013 Publication International Journal of Pattern Recognition and Artificial Intelligence Abbreviated Journal IJPRAI  
  Volume 27 Issue 3 Pages 1360002-1360029  
  Keywords Discrete attributed graphs; graph embedding; graph classification  
  Abstract Graph-based representations of patterns are very flexible and powerful, but they are not easily processed due to the lack of learning algorithms in the domain of graphs. Embedding a graph into a vector space solves this problem since graphs are turned into feature vectors and thus all the statistical learning machinery becomes available for graph input patterns. In this work we present a new way of embedding discrete attributed graphs into vector spaces using node and edge label frequencies. The methodology is experimentally tested on graph classification problems, using patterns of different nature, and it is shown to be competitive to state-of-the-art classification algorithms for graphs, while being computationally much more efficient.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ GVB2013 Serial 2305  
Permanent link to this record
 

 
Author Albert Gordo edit  openurl
  Title Document Image Representation, Classification and Retrieval in Large-Scale Domains Type Book Whole
  Year 2013 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Despite the “paperless office” ideal that started in the decade of the seventies, businesses still strive against an increasing amount of paper documentation. Companies still receive huge amounts of paper documentation that need to be analyzed and processed, mostly in a manual way. A solution for this task consists in, first, automatically scanning the incoming documents. Then, document images can be analyzed and information can be extracted from the data. Documents can also be automatically dispatched to the appropriate workflows, used to retrieve similar documents in the dataset to transfer information, etc.

Due to the nature of this “digital mailroom”, we need document representation methods to be general, i.e., able to cope with very different types of documents. We need the methods to be sound, i.e., able to cope with unexpected types of documents, noise, etc. And, we need to methods to be scalable, i.e., able to cope with thousands or millions of documents that need to be processed, stored, and consulted. Unfortunately, current techniques of document representation, classification and retrieval are not apt for this digital mailroom framework, since they do not fulfill some or all of these requirements.

Through this thesis we focus on the problem of document representation aimed at classification and retrieval tasks under this digital mailroom framework. We first propose a novel document representation based on runlength histograms, and extend it to cope with more complex documents such as multiple-page documents, or documents that contain more sources of information such as extracted OCR text. Then we focus on the scalability requirements and propose a novel binarization method which we dubbed PCAE, as well as two general asymmetric distances between binary embeddings that can significantly improve the retrieval results at a minimal extra computational cost. Finally, we note the importance of supervised learning when performing large-scale retrieval, and study several approaches that can significantly boost the results at no extra cost at query time.
 
  Address Barcelona  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Ernest Valveny;Florent Perronnin  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ Gor2013 Serial 2277  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: