|
Records |
Links |
|
Author |
Ernest Valveny; Oriol Ramos Terrades; Joan Mas; Marçal Rusiñol |
|
|
Title |
Interactive Document Retrieval and Classification. |
Type |
Book Chapter |
|
Year |
2013 |
Publication |
Multimodal Interaction in Image and Video Applications |
Abbreviated Journal |
|
|
|
Volume |
48 |
Issue |
|
Pages |
17-30 |
|
|
Keywords |
|
|
|
Abstract |
In this chapter we describe a system for document retrieval and classification following the interactive-predictive framework. In particular, the system addresses two different scenarios of document analysis: document classification based on visual appearance and logo detection. These two classical problems of document analysis are formulated following the interactive-predictive model, taking the user interaction into account to make easier the process of annotating and labelling the documents. A system implementing this model in a real scenario is presented and analyzed. This system also takes advantage of active learning techniques to speed up the task of labelling the documents. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
Angel Sappa; Jordi Vitria |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1868-4394 |
ISBN |
978-3-642-35931-6 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ VRM2013 |
Serial |
2341 |
|
Permanent link to this record |
|
|
|
|
Author |
Thanh Ha Do; Salvatore Tabbone; Oriol Ramos Terrades |
|
|
Title |
New Approach for Symbol Recognition Combining Shape Context of Interest Points with Sparse Representation |
Type |
Conference Article |
|
Year |
2013 |
Publication |
12th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
265-269 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we propose a new approach for symbol description. Our method is built based on the combination of shape context of interest points descriptor and sparse representation. More specifically, we first learn a dictionary describing shape context of interest point descriptors. Then, based on information retrieval techniques, we build a vector model for each symbol based on its sparse representation in a visual vocabulary whose visual words are columns in the learneddictionary. The retrieval task is performed by ranking symbols based on similarity between vector models. Evaluation of our method, using benchmark datasets, demonstrates the validity of our approach and shows that it outperforms related state-of-theart methods. |
|
|
Address |
Washington; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ DTR2013b |
Serial |
2331 |
|
Permanent link to this record |
|
|
|
|
Author |
R. Bertrand; P. Gomez-Krämer; Oriol Ramos Terrades; P. Franco; Jean-Marc Ogier |
|
|
Title |
A System Based On Intrinsic Features for Fraudulent Document Detection |
Type |
Conference Article |
|
Year |
2013 |
Publication |
12th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
106-110 |
|
|
Keywords |
paper document; document analysis; fraudulent document; forgery; fake |
|
|
Abstract |
Paper documents still represent a large amount of information supports used nowadays and may contain critical data. Even though official documents are secured with techniques such as printed patterns or artwork, paper documents suffer froma lack of security.
However, the high availability of cheap scanning and printing hardware allows non-experts to easily create fake documents. As the use of a watermarking system added during the document production step is hardly possible, solutions have to be proposed to distinguish a genuine document from a forged one.
In this paper, we present an automatic forgery detection method based on document’s intrinsic features at character level. This method is based on the one hand on outlier character detection in a discriminant feature space and on the other hand on the detection of strictly similar characters. Therefore, a feature set iscomputed for all characters. Then, based on a distance between characters of the same class. |
|
|
Address |
Washington; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.061 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BGR2013a |
Serial |
2332 |
|
Permanent link to this record |
|
|
|
|
Author |
Jon Almazan; Albert Gordo; Alicia Fornes; Ernest Valveny |
|
|
Title |
Handwritten Word Spotting with Corrected Attributes |
Type |
Conference Article |
|
Year |
2013 |
Publication |
15th IEEE International Conference on Computer Vision |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1017-1024 |
|
|
Keywords |
|
|
|
Abstract |
We propose an approach to multi-writer word spotting, where the goal is to find a query word in a dataset comprised of document images. We propose an attributes-based approach that leads to a low-dimensional, fixed-length representation of the word images that is fast to compute and, especially, fast to compare. This approach naturally leads to an unified representation of word images and strings, which seamlessly allows one to indistinctly perform query-by-example, where the query is an image, and query-by-string, where the query is a string. We also propose a calibration scheme to correct the attributes scores based on Canonical Correlation Analysis that greatly improves the results on a challenging dataset. We test our approach on two public datasets showing state-of-the-art results. |
|
|
Address |
Sydney; Australia; December 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1550-5499 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICCV |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ AGF2013 |
Serial |
2327 |
|
Permanent link to this record |
|
|
|
|
Author |
Francisco Alvaro; Francisco Cruz; Joan Andreu Sanchez; Oriol Ramos Terrades; Jose Miguel Bemedi |
|
|
Title |
Page Segmentation of Structured Documents Using 2D Stochastic Context-Free Grammars |
Type |
Conference Article |
|
Year |
2013 |
Publication |
6th Iberian Conference on Pattern Recognition and Image Analysis |
Abbreviated Journal |
|
|
|
Volume |
7887 |
Issue |
|
Pages |
133-140 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we define a bidimensional extension of Stochastic Context-Free Grammars for page segmentation of structured documents. Two sets of text classification features are used to perform an initial classification of each zone of the page. Then, the page segmentation is obtained as the most likely hypothesis according to a grammar. This approach is compared to Conditional Random Fields and results show significant improvements in several cases. Furthermore, grammars provide a detailed segmentation that allowed a semantic evaluation which also validates this model. |
|
|
Address |
Madeira; Portugal; June 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-642-38627-5 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
IbPRIA |
|
|
Notes |
DAG; 605.203 |
Approved |
no |
|
|
Call Number |
Admin @ si @ ACS2013 |
Serial |
2328 |
|
Permanent link to this record |
|
|
|
|
Author |
Francisco Cruz; Oriol Ramos Terrades |
|
|
Title |
Handwritten Line Detection via an EM Algorithm |
Type |
Conference Article |
|
Year |
2013 |
Publication |
12th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
718-722 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we present a handwritten line segmentation method devised to work on documents composed of several paragraphs with multiple line orientations. The method is based on a variation of the EM algorithm for the estimation of a set of regression lines between the connected components that compose the image. We evaluated our method on the ICDAR2009 handwriting segmentation contest dataset with promising results that overcome most of the presented methods. In addition, we prove the usability of the presented method by performing line segmentation on the George Washington database obtaining encouraging results. |
|
|
Address |
Washington; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ CrT2013 |
Serial |
2329 |
|
Permanent link to this record |
|
|
|
|
Author |
Thanh Ha Do; Salvatore Tabbone; Oriol Ramos Terrades |
|
|
Title |
Document noise removal using sparse representations over learned dictionary |
Type |
Conference Article |
|
Year |
2013 |
Publication |
Symposium on Document engineering |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
161-168 |
|
|
Keywords |
|
|
|
Abstract |
best paper award
In this paper, we propose an algorithm for denoising document images using sparse representations. Following a training set, this algorithm is able to learn the main document characteristics and also, the kind of noise included into the documents. In this perspective, we propose to model the noise energy based on the normalized cross-correlation between pairs of noisy and non-noisy documents. Experimental
results on several datasets demonstrate the robustness of our method compared with the state-of-the-art. |
|
|
Address |
Barcelona; October 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-1-4503-1789-4 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ACM-DocEng |
|
|
Notes |
DAG; 600.061 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DTR2013a |
Serial |
2330 |
|
Permanent link to this record |
|
|
|
|
Author |
Jon Almazan; Alicia Fornes; Ernest Valveny |
|
|
Title |
A Deformable HOG-based Shape Descriptor |
Type |
Conference Article |
|
Year |
2013 |
Publication |
12th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1022-1026 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we deal with the problem of recognizing handwritten shapes. We present a new deformable feature extraction method that adapts to the shape to be described, dealing in this way with the variability introduced in the handwriting domain. It consists in a selection of the regions that best define the shape to be described, followed by the computation of histograms of oriented gradients-based features over these points. Our results significantly outperform other descriptors in the literature for the task of hand-drawn shape recognition and handwritten word retrieval |
|
|
Address |
Washington; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ AFV2013 |
Serial |
2326 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Pere de las Heras; Joan Mas; Gemma Sanchez; Ernest Valveny |
|
|
Title |
Notation-invariant patch-based wall detector in architectural floor plans |
Type |
Book Chapter |
|
Year |
2013 |
Publication |
Graphics Recognition. New Trends and Challenges |
Abbreviated Journal |
|
|
|
Volume |
7423 |
Issue |
|
Pages |
79--88 |
|
|
Keywords |
|
|
|
Abstract |
Architectural floor plans exhibit a large variability in notation. Therefore, segmenting and identifying the elements of any kind of plan becomes a challenging task for approaches based on grouping structural primitives obtained by vectorization. Recently, a patch-based segmentation method working at pixel level and relying on the construction of a visual vocabulary has been proposed in [1], showing its adaptability to different notations by automatically learning the visual appearance of the elements in each different notation. This paper presents an evolution of that previous work, after analyzing and testing several alternatives for each of the different steps of the method: Firstly, an automatic plan-size normalization process is done. Secondly we evaluate different features to obtain the description of every patch. Thirdly, we train an SVM classifier to obtain the category of every patch instead of constructing a visual vocabulary. These variations of the method have been tested for wall detection on two datasets of architectural floor plans with different notations. After studying in deep each of the steps in the process pipeline, we are able to find the best system configuration, which highly outperforms the results on wall segmentation obtained by the original paper. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-642-36823-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.045; 600.056; 605.203 |
Approved |
no |
|
|
Call Number |
Admin @ si @ HMS2013 |
Serial |
2322 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Pere de las Heras; David Fernandez; Ernest Valveny; Josep Llados; Gemma Sanchez |
|
|
Title |
Unsupervised wall detector in architectural floor plan |
Type |
Conference Article |
|
Year |
2013 |
Publication |
12th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1245-1249 |
|
|
Keywords |
|
|
|
Abstract |
Wall detection in floor plans is a crucial step in a complete floor plan recognition system. Walls define the main structure of buildings and convey essential information for the detection of other structural elements. Nevertheless, wall segmentation is a difficult task, mainly because of the lack of a standard graphical notation. The existing approaches are restricted to small group of similar notations or require the existence of pre-annotated corpus of input images to learn each new notation. In this paper we present an automatic wall segmentation system, with the ability to handle completely different notations without the need of any annotated dataset. It only takes advantage of the general knowledge that walls are a repetitive element, naturally distributed within the plan and commonly modeled by straight parallel lines. The method has been tested on four datasets of real floor plans with different notations, and compared with the state-of-the-art. The results show its suitability for different graphical notations, achieving higher recall rates than the rest of the methods while keeping a high average precision. |
|
|
Address |
Washington; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.061; 600.056; 600.045 |
Approved |
no |
|
|
Call Number |
Admin @ si @ HFV2013 |
Serial |
2319 |
|
Permanent link to this record |