|
Records |
Links |
|
Author |
Christophe Rigaud; Dimosthenis Karatzas; Joost Van de Weijer; Jean-Christophe Burie; Jean-Marc Ogier |
|
|
Title |
An active contour model for speech balloon detection in comics |
Type |
Conference Article |
|
Year |
2013 |
Publication |
12th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1240-1244 |
|
|
Keywords |
|
|
|
Abstract |
Comic books constitute an important cultural heritage asset in many countries. Digitization combined with subsequent comic book understanding would enable a variety of new applications, including content-based retrieval and content retargeting. Document understanding in this domain is challenging as comics are semi-structured documents, combining semantically important graphical and textual parts. Few studies have been done in this direction. In this work we detail a novel approach for closed and non-closed speech balloon localization in scanned comic book pages, an essential step towards a fully automatic comic book understanding. The approach is compared with existing methods for closed balloon localization found in the literature and results are presented. |
|
|
Address |
washington; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; CIC; 600.056 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RKW2013a |
Serial |
2260 |
|
Permanent link to this record |
|
|
|
|
Author |
Alicia Fornes; Xavier Otazu; Josep Llados |
|
|
Title |
Show through cancellation and image enhancement by multiresolution contrast processing |
Type |
Conference Article |
|
Year |
2013 |
Publication |
12th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
200-204 |
|
|
Keywords |
|
|
|
Abstract |
Historical documents suffer from different types of degradation and noise such as background variation, uneven illumination or dark spots. In case of double-sided documents, another common problem is that the back side of the document usually interferes with the front side because of the transparency of the document or ink bleeding. This effect is called the show through phenomenon. Many methods are developed to solve these problems, and in the case of show-through, by scanning and matching both the front and back sides of the document. In contrast, our approach is designed to use only one side of the scanned document. We hypothesize that show-trough are low contrast components, while foreground components are high contrast ones. A Multiresolution Contrast (MC) decomposition is presented in order to estimate the contrast of features at different spatial scales. We cancel the show-through phenomenon by thresholding these low contrast components. This decomposition is also able to enhance the image removing shadowed areas by weighting spatial scales. Results show that the enhanced images improve the readability of the documents, allowing scholars both to recover unreadable words and to solve ambiguities. |
|
|
Address |
Washington; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 602.006; 600.045; 600.061; 600.052;CIC |
Approved |
no |
|
|
Call Number |
Admin @ si @ FOL2013 |
Serial |
2241 |
|
Permanent link to this record |
|
|
|
|
Author |
David Aldavert; Marçal Rusiñol; Ricardo Toledo; Josep Llados |
|
|
Title |
Integrating Visual and Textual Cues for Query-by-String Word Spotting |
Type |
Conference Article |
|
Year |
2013 |
Publication |
12th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
511 - 515 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we present a word spotting framework that follows the query-by-string paradigm where word images are represented both by textual and visual representations. The textual representation is formulated in terms of character $n$-grams while the visual one is based on the bag-of-visual-words scheme. These two representations are merged together and projected to a sub-vector space. This transform allows to, given a textual query, retrieve word instances that were only represented by the visual modality. Moreover, this statistical representation can be used together with state-of-the-art indexation structures in order to deal with large-scale scenarios. The proposed method is evaluated using a collection of historical documents outperforming state-of-the-art performances. |
|
|
Address |
Washington; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; ADAS; 600.045; 600.055; 600.061 |
Approved |
no |
|
|
Call Number |
Admin @ si @ ART2013 |
Serial |
2224 |
|
Permanent link to this record |
|
|
|
|
Author |
Anjan Dutta; Jaume Gibert; Josep Llados; Horst Bunke; Umapada Pal |
|
|
Title |
Combination of Product Graph and Random Walk Kernel for Symbol Spotting in Graphical Documents |
Type |
Conference Article |
|
Year |
2012 |
Publication |
21st International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1663-1666 |
|
|
Keywords |
|
|
|
Abstract |
This paper explores the utilization of product graph for spotting symbols on graphical documents. Product graph is intended to find the candidate subgraphs or components in the input graph containing the paths similar to the query graph. The acute angle between two edges and their length ratio are considered as the node labels. In a second step, each of the candidate subgraphs in the input graph is assigned with a distance measure computed by a random walk kernel. Actually it is the minimum of the distances of the component to all the components of the model graph. This distance measure is then used to eliminate dissimilar components. The remaining neighboring components are grouped and the grouped zone is considered as a retrieval zone of a symbol similar to the queried one. The entire method works online, i.e., it doesn't need any preprocessing step. The present paper reports the initial results of the method, which are very encouraging. |
|
|
Address |
Tsukuba, Japan |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1051-4651 |
ISBN |
978-1-4673-2216-4 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ DGL2012 |
Serial |
2125 |
|
Permanent link to this record |
|
|
|
|
Author |
Klaus Broelemann; Anjan Dutta; Xiaoyi Jiang; Josep Llados |
|
|
Title |
Hierarchical graph representation for symbol spotting in graphical document images |
Type |
Conference Article |
|
Year |
2012 |
Publication |
Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshop |
Abbreviated Journal |
|
|
|
Volume |
7626 |
Issue |
|
Pages |
529-538 |
|
|
Keywords |
|
|
|
Abstract |
Symbol spotting can be defined as locating given query symbol in a large collection of graphical documents. In this paper we present a hierarchical graph representation for symbols. This representation allows graph matching methods to deal with low-level vectorization errors and, thus, to perform a robust symbol spotting. To show the potential of this approach, we conduct an experiment with the SESYD dataset. |
|
|
Address |
Miyajima-Itsukushima, Hiroshima |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-642-34165-6 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
SSPR&SPR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ BDJ2012 |
Serial |
2126 |
|
Permanent link to this record |
|
|
|
|
Author |
Partha Pratim Roy; Umapada Pal; Josep Llados; Mathieu Nicolas Delalandre |
|
|
Title |
Multi-oriented touching text character segmentation in graphical documents using dynamic programming |
Type |
Journal Article |
|
Year |
2012 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
45 |
Issue |
5 |
Pages |
1972-1983 |
|
|
Keywords |
|
|
|
Abstract |
2,292 JCR
The touching character segmentation problem becomes complex when touching strings are multi-oriented. Moreover in graphical documents sometimes characters in a single-touching string have different orientations. Segmentation of such complex touching is more challenging. In this paper, we present a scheme towards the segmentation of English multi-oriented touching strings into individual characters. When two or more characters touch, they generate a big cavity region in the background portion. Based on the convex hull information, at first, we use this background information to find some initial points for segmentation of a touching string into possible primitives (a primitive consists of a single character or part of a character). Next, the primitives are merged to get optimum segmentation. A dynamic programming algorithm is applied for this purpose using the total likelihood of characters as the objective function. A SVM classifier is used to find the likelihood of a character. To consider multi-oriented touching strings the features used in the SVM are invariant to character orientation. Experiments were performed in different databases of real and synthetic touching characters and the results show that the method is efficient in segmenting touching characters of arbitrary orientations and sizes. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0031-3203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ RPL2012a |
Serial |
2133 |
|
Permanent link to this record |
|
|
|
|
Author |
Partha Pratim Roy; Umapada Pal; Josep Llados |
|
|
Title |
Text line extraction in graphical documents using background and foreground |
Type |
Journal Article |
|
Year |
2012 |
Publication |
International Journal on Document Analysis and Recognition |
Abbreviated Journal |
IJDAR |
|
|
Volume |
15 |
Issue |
3 |
Pages |
227-241 |
|
|
Keywords |
|
|
|
Abstract |
0,405 JCR
In graphical documents (e.g., maps, engineering drawings), artistic documents etc., the text lines are annotated in multiple orientations or curvilinear way to illustrate different locations or symbols. For the optical character recognition of such documents, individual text lines from the documents need to be extracted. In this paper, we propose a novel method to segment such text lines and the method is based on the foreground and background information of the text components. To effectively utilize the background information, a water reservoir concept is used here. In the proposed scheme, at first, individual components are detected and grouped into character clusters in a hierarchical way using size and positional information. Next, the clusters are extended in two extreme sides to determine potential candidate regions. Finally, with the help of these candidate regions,
individual lines are extracted. The experimental results are presented on different datasets of graphical documents, camera-based warped documents, noisy images containing seals, etc. The results demonstrate that our approach is robust and invariant to size and orientation of the text lines present in
the document. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1433-2833 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ RPL2012b |
Serial |
2134 |
|
Permanent link to this record |
|
|
|
|
Author |
Thanh Ha Do; Salvatore Tabbone; Oriol Ramos Terrades |
|
|
Title |
Noise suppression over bi-level graphical documents using a sparse representation |
Type |
Conference Article |
|
Year |
2012 |
Publication |
Colloque International Francophone sur l'Écrit et le Document |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Bordeaux |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CIFED |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ DTR2012b |
Serial |
2136 |
|
Permanent link to this record |
|
|
|
|
Author |
Jaume Gibert; Ernest Valveny; Horst Bunke; Alicia Fornes |
|
|
Title |
On the Correlation of Graph Edit Distance and L1 Distance in the Attribute Statistics Embedding Space |
Type |
Conference Article |
|
Year |
2012 |
Publication |
Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshop |
Abbreviated Journal |
|
|
|
Volume |
7626 |
Issue |
|
Pages |
135-143 |
|
|
Keywords |
|
|
|
Abstract |
Graph embeddings in vector spaces aim at assigning a pattern vector to every graph so that the problems of graph classification and clustering can be solved by using data processing algorithms originally developed for statistical feature vectors. An important requirement graph features should fulfil is that they reproduce as much as possible the properties among objects in the graph domain. In particular, it is usually desired that distances between pairs of graphs in the graph domain closely resemble those between their corresponding vectorial representations. In this work, we analyse relations between the edit distance in the graph domain and the L1 distance of the attribute statistics based embedding, for which good classification performance has been reported on various datasets. We show that there is actually a high correlation between the two kinds of distances provided that the corresponding parameter values that account for balancing the weight between node and edge based features are properly selected. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer-Berlag, Berlin |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-3-642-34165-6 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
SSPR&SPR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ GVB2012c |
Serial |
2167 |
|
Permanent link to this record |
|
|
|
|
Author |
Jaume Gibert |
|
|
Title |
Vector Space Embedding of Graphs via Statistics of Labelling Information |
Type |
Book Whole |
|
Year |
2012 |
Publication |
PhD Thesis, Universitat Autonoma de Barcelona-CVC |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Pattern recognition is the task that aims at distinguishing objects among different classes. When such a task wants to be solved in an automatic way a crucial step is how to formally represent such patterns to the computer. Based on the different representational formalisms, we may distinguish between statistical and structural pattern recognition. The former describes objects as a set of measurements arranged in the form of what is called a feature vector. The latter assumes that relations between parts of the underlying objects need to be explicitly represented and thus it uses relational structures such as graphs for encoding their inherent information. Vector spaces are a very flexible mathematical structure that has allowed to come up with several efficient ways for the analysis of patterns under the form of feature vectors. Nevertheless, such a representation cannot explicitly cope with binary relations between parts of the objects and it is restricted to measure the exact same number of features for each pattern under study regardless of their complexity. Graph-based representations present the contrary situation. They can easily adapt to the inherent complexity of the patterns but introduce a problem of high computational complexity, hindering the design of efficient tools to process and analyse patterns.
Solving this paradox is the main goal of this thesis. The ideal situation for solving pattern recognition problems would be to represent the patterns using relational structures such as graphs, and to be able to use the wealthy repository of data processing tools from the statistical pattern recognition domain. An elegant solution to this problem is to transform the graph domain into a vector domain where any processing algorithm can be applied. In other words, by mapping each graph to a point in a vector space we automatically get access to the rich set of algorithms from the statistical domain to be applied in the graph domain. Such methodology is called graph embedding.
In this thesis we propose to associate feature vectors to graphs in a simple and very efficient way by just putting attention on the labelling information that graphs store. In particular, we count frequencies of node labels and of edges between labels. Although their locality, these features are able to robustly represent structurally global properties of graphs, when considered together in the form of a vector. We initially deal with the case of discrete attributed graphs, where features are easy to compute. The continuous case is tackled as a natural generalization of the discrete one, where rather than counting node and edge labelling instances, we count statistics of some representatives of them. We encounter how the proposed vectorial representations of graphs suffer from high dimensionality and correlation among components and we face these problems by feature selection algorithms. We also explore how the diversity of different embedding representations can be exploited in order to boost the performance of base classifiers in a multiple classifier systems framework. An extensive experimental evaluation finally shows how the methodology we propose can be efficiently computed and compete with other graph matching and embedding methodologies. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
Ph.D. thesis |
|
|
Publisher |
Ediciones Graficas Rey |
Place of Publication |
|
Editor |
Ernest Valveny |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ Gib2012 |
Serial |
2204 |
|
Permanent link to this record |