|
Records |
Links |
|
Author |
Manuel Carbonell; Joan Mas; Mauricio Villegas; Alicia Fornes; Josep Llados |
|
|
Title |
End-to-End Handwritten Text Detection and Transcription in Full Pages |
Type |
Conference Article |
|
Year |
2019 |
Publication |
2nd International Workshop on Machine Learning |
Abbreviated Journal |
|
|
|
Volume |
5 |
Issue |
|
Pages |
29-34 |
|
|
Keywords |
Handwritten Text Recognition; Layout Analysis; Text segmentation; Deep Neural Networks; Multi-task learning |
|
|
Abstract |
When transcribing handwritten document images, inaccuracies in the text segmentation step often cause errors in the subsequent transcription step. For this reason, some recent methods propose to perform the recognition at paragraph level. But still, errors in the segmentation of paragraphs can affect
the transcription performance. In this work, we propose an end-to-end framework to transcribe full pages. The joint text detection and transcription allows to remove the layout analysis requirement at test time. The experimental results show that our approach can achieve comparable results to models that assume
segmented paragraphs, and suggest that joining the two tasks brings an improvement over doing the two tasks separately. |
|
|
Address |
Sydney; Australia; September 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR WML |
|
|
Notes |
DAG; 600.140; 601.311; 600.140 |
Approved |
no |
|
|
Call Number |
Admin @ si @ CMV2019 |
Serial |
3353 |
|
Permanent link to this record |
|
|
|
|
Author |
Albert Suso; Pau Riba; Oriol Ramos Terrades; Josep Llados |
|
|
Title |
A Self-supervised Inverse Graphics Approach for Sketch Parametrization |
Type |
Conference Article |
|
Year |
2021 |
Publication |
16th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
12916 |
Issue |
|
Pages |
28-42 |
|
|
Keywords |
|
|
|
Abstract |
The study of neural generative models of handwritten text and human sketches is a hot topic in the computer vision field. The landmark SketchRNN provided a breakthrough by sequentially generating sketches as a sequence of waypoints, and more recent articles have managed to generate fully vector sketches by coding the strokes as Bézier curves. However, the previous attempts with this approach need them all a ground truth consisting in the sequence of points that make up each stroke, which seriously limits the datasets the model is able to train in. In this work, we present a self-supervised end-to-end inverse graphics approach that learns to embed each image to its best fit of Bézier curves. The self-supervised nature of the training process allows us to train the model in a wider range of datasets, but also to perform better after-training predictions by applying an overfitting process on the input binary image. We report qualitative an quantitative evaluations on the MNIST and the Quick, Draw! datasets. |
|
|
Address |
Lausanne; Suissa; September 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SRR2021 |
Serial |
3675 |
|
Permanent link to this record |
|
|
|
|
Author |
Alicia Fornes; Josep Llados; Gemma Sanchez; Horst Bunke |
|
|
Title |
Writer Identification in Old Handwritten Music Scores |
Type |
Book Chapter |
|
Year |
2012 |
Publication |
Pattern Recognition and Signal Processing in Archaeometry: Mathematical and Computational Solutions for Archaeology |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
27-63 |
|
|
Keywords |
|
|
|
Abstract |
The aim of writer identification is determining the writer of a piece of handwriting from a set of writers. In this paper we present a system for writer identification in old handwritten music scores. Even though an important amount of compositions contains handwritten text in the music scores, the aim of our work is to use only music notation to determine the author. The steps of the system proposed are the following. First of all, the music sheet is preprocessed and normalized for obtaining a single binarized music line, without the staff lines. Afterwards, 100 features are extracted for every music line, which are subsequently used in a k-NN classifier that compares every feature vector with prototypes stored in a database. By applying feature selection and extraction methods on the original feature set, the performance is increased. The proposed method has been tested on a database of old music scores from the 17th to 19th centuries, achieving a recognition rate of about 95%. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
IGI-Global |
Place of Publication |
|
Editor |
Copnstantin Papaodysseus |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ FLS2012 |
Serial |
1828 |
|
Permanent link to this record |
|
|
|
|
Author |
Adria Rico; Alicia Fornes |
|
|
Title |
Camera-based Optical Music Recognition using a Convolutional Neural Network |
Type |
Conference Article |
|
Year |
2017 |
Publication |
12th IAPR International Workshop on Graphics Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
27-28 |
|
|
Keywords |
optical music recognition; document analysis; convolutional neural network; deep learning |
|
|
Abstract |
Optical Music Recognition (OMR) consists in recognizing images of music scores. Contrary to expectation, the current OMR systems usually fail when recognizing images of scores captured by digital cameras and smartphones. In this work, we propose a camera-based OMR system based on Convolutional Neural Networks, showing promising preliminary results |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GREC |
|
|
Notes |
DAG;600.097; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RiF2017 |
Serial |
3059 |
|
Permanent link to this record |
|
|
|
|
Author |
Juan Ignacio Toledo; Manuel Carbonell; Alicia Fornes; Josep Llados |
|
|
Title |
Information Extraction from Historical Handwritten Document Images with a Context-aware Neural Model |
Type |
Journal Article |
|
Year |
2019 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
86 |
Issue |
|
Pages |
27-36 |
|
|
Keywords |
Document image analysis; Handwritten documents; Named entity recognition; Deep neural networks |
|
|
Abstract |
Many historical manuscripts that hold trustworthy memories of the past societies contain information organized in a structured layout (e.g. census, birth or marriage records). The precious information stored in these documents cannot be effectively used nor accessed without costly annotation efforts. The transcription driven by the semantic categories of words is crucial for the subsequent access. In this paper we describe an approach to extract information from structured historical handwritten text images and build a knowledge representation for the extraction of meaning out of historical data. The method extracts information, such as named entities, without the need of an intermediate transcription step, thanks to the incorporation of context information through language models. Our system has two variants, the first one is based on bigrams, whereas the second one is based on recurrent neural networks. Concretely, our second architecture integrates a Convolutional Neural Network to model visual information from word images together with a Bidirecitonal Long Short Term Memory network to model the relation among the words. This integrated sequential approach is able to extract more information than just the semantic category (e.g. a semantic category can be associated to a person in a record). Our system is generic, it deals with out-of-vocabulary words by design, and it can be applied to structured handwritten texts from different domains. The method has been validated with the ICDAR IEHHR competition protocol, outperforming the existing approaches. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.097; 601.311; 603.057; 600.084; 600.140; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ TCF2019 |
Serial |
3166 |
|
Permanent link to this record |
|
|
|
|
Author |
Alicia Fornes; Josep Llados; Gemma Sanchez |
|
|
Title |
Old Handwritten Musical Symbol Classification by a Dynamic Time Warping Based Method |
Type |
Conference Article |
|
Year |
2007 |
Publication |
Seventh IAPR International Workshop on Graphics Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
26–27 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Curitiba (Brazil) |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GREC |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ FLS2007 |
Serial |
887 |
|
Permanent link to this record |
|
|
|
|
Author |
Klaus Broelemann; Anjan Dutta; Xiaoyi Jiang; Josep Llados |
|
|
Title |
Hierarchical Plausibility-Graphs for Symbol Spotting in Graphical Documents |
Type |
Book Chapter |
|
Year |
2014 |
Publication |
Graphics Recognition. Current Trends and Challenges |
Abbreviated Journal |
|
|
|
Volume |
8746 |
Issue |
|
Pages |
25-37 |
|
|
Keywords |
|
|
|
Abstract |
Graph representation of graphical documents often suffers from noise such as spurious nodes and edges, and their discontinuity. In general these errors occur during the low-level image processing viz. binarization, skeletonization, vectorization etc. Hierarchical graph representation is a nice and efficient way to solve this kind of problem by hierarchically merging node-node and node-edge depending on the distance. But the creation of hierarchical graph representing the graphical information often uses hard thresholds on the distance to create the hierarchical nodes (next state) of the lower nodes (or states) of a graph. As a result, the representation often loses useful information. This paper introduces plausibilities to the nodes of hierarchical graph as a function of distance and proposes a modified algorithm for matching subgraphs of the hierarchical graphs. The plausibility-annotated nodes help to improve the performance of the matching algorithm on two hierarchical structures. To show the potential of this approach, we conduct an experiment with the SESYD dataset. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
Bart Lamiroy; Jean-Marc Ogier |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-662-44853-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.045; 600.056; 600.061; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BDJ2014 |
Serial |
2699 |
|
Permanent link to this record |
|
|
|
|
Author |
Arnau Baro; Pau Riba; Jorge Calvo-Zaragoza; Alicia Fornes |
|
|
Title |
Optical Music Recognition by Recurrent Neural Networks |
Type |
Conference Article |
|
Year |
2017 |
Publication |
14th IAPR International Workshop on Graphics Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
25-26 |
|
|
Keywords |
Optical Music Recognition; Recurrent Neural Network; Long Short-Term Memory |
|
|
Abstract |
Optical Music Recognition is the task of transcribing a music score into a machine readable format. Many music scores are written in a single staff, and therefore, they could be treated as a sequence. Therefore, this work explores the use of Long Short-Term Memory (LSTM) Recurrent Neural Networks for reading the music score sequentially, where the LSTM helps in keeping the context. For training, we have used a synthetic dataset of more than 40000 images, labeled at primitive level |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.097; 601.302; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BRC2017 |
Serial |
3056 |
|
Permanent link to this record |
|
|
|
|
Author |
Partha Pratim Roy; Umapada Pal; Josep Llados |
|
|
Title |
Seal Object Detection in Document Images using GHT of Local Component Shapes |
Type |
Conference Article |
|
Year |
2010 |
Publication |
10th ACM Symposium On Applied Computing |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
23–27 |
|
|
Keywords |
|
|
|
Abstract |
Due to noise, overlapped text/signature and multi-oriented nature, seal (stamp) object detection involves a difficult challenge. This paper deals with automatic detection of seal from documents with cluttered background. Here, a seal object is characterized by scale and rotation invariant spatial feature descriptors (distance and angular position) computed from recognition result of individual connected components (characters). Recognition of multi-scale and multi-oriented component is done using Support Vector Machine classifier. Generalized Hough Transform (GHT) is used to detect the seal and a voting is casted for finding possible location of the seal object in a document based on these spatial feature descriptor of components pairs. The peak of votes in GHT accumulator validates the hypothesis to locate the seal object in a document. Experimental results show that, the method is efficient to locate seal instance of arbitrary shape and orientation in documents. |
|
|
Address |
Sierre, Switzerland |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
SAC |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ RPL2010a |
Serial |
1291 |
|
Permanent link to this record |
|
|
|
|
Author |
Jaume Gibert; Ernest Valveny; Horst Bunke |
|
|
Title |
Dimensionality Reduction for Graph of Words Embedding |
Type |
Conference Article |
|
Year |
2011 |
Publication |
8th IAPR-TC-15 International Workshop. Graph-Based Representations in Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
6658 |
Issue |
|
Pages |
22-31 |
|
|
Keywords |
|
|
|
Abstract |
The Graph of Words Embedding consists in mapping every graph of a given dataset to a feature vector by counting unary and binary relations between node attributes of the graph. While it shows good properties in classification problems, it suffers from high dimensionality and sparsity. These two issues are addressed in this article. Two well-known techniques for dimensionality reduction, kernel principal component analysis (kPCA) and independent component analysis (ICA), are applied to the embedded graphs. We discuss their performance compared to the classification of the original vectors on three different public databases of graphs. |
|
|
Address |
Münster, Germany |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
Xiaoyi Jiang; Miquel Ferrer; Andrea Torsello |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-3-642-20843-0 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GbRPR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ GVB2011a |
Serial |
1743 |
|
Permanent link to this record |