toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Manuel Carbonell; Joan Mas; Mauricio Villegas; Alicia Fornes; Josep Llados edit   pdf
url  doi
openurl 
  Title End-to-End Handwritten Text Detection and Transcription in Full Pages Type Conference Article
  Year 2019 Publication 2nd International Workshop on Machine Learning Abbreviated Journal  
  Volume 5 Issue Pages (down) 29-34  
  Keywords Handwritten Text Recognition; Layout Analysis; Text segmentation; Deep Neural Networks; Multi-task learning  
  Abstract When transcribing handwritten document images, inaccuracies in the text segmentation step often cause errors in the subsequent transcription step. For this reason, some recent methods propose to perform the recognition at paragraph level. But still, errors in the segmentation of paragraphs can affect
the transcription performance. In this work, we propose an end-to-end framework to transcribe full pages. The joint text detection and transcription allows to remove the layout analysis requirement at test time. The experimental results show that our approach can achieve comparable results to models that assume
segmented paragraphs, and suggest that joining the two tasks brings an improvement over doing the two tasks separately.
 
  Address Sydney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR WML  
  Notes DAG; 600.140; 601.311; 600.140 Approved no  
  Call Number Admin @ si @ CMV2019 Serial 3353  
Permanent link to this record
 

 
Author Albert Suso; Pau Riba; Oriol Ramos Terrades; Josep Llados edit  url
openurl 
  Title A Self-supervised Inverse Graphics Approach for Sketch Parametrization Type Conference Article
  Year 2021 Publication 16th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 12916 Issue Pages (down) 28-42  
  Keywords  
  Abstract The study of neural generative models of handwritten text and human sketches is a hot topic in the computer vision field. The landmark SketchRNN provided a breakthrough by sequentially generating sketches as a sequence of waypoints, and more recent articles have managed to generate fully vector sketches by coding the strokes as Bézier curves. However, the previous attempts with this approach need them all a ground truth consisting in the sequence of points that make up each stroke, which seriously limits the datasets the model is able to train in. In this work, we present a self-supervised end-to-end inverse graphics approach that learns to embed each image to its best fit of Bézier curves. The self-supervised nature of the training process allows us to train the model in a wider range of datasets, but also to perform better after-training predictions by applying an overfitting process on the input binary image. We report qualitative an quantitative evaluations on the MNIST and the Quick, Draw! datasets.  
  Address Lausanne; Suissa; September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ SRR2021 Serial 3675  
Permanent link to this record
 

 
Author Alicia Fornes; Josep Llados; Gemma Sanchez; Horst Bunke edit  doi
openurl 
  Title Writer Identification in Old Handwritten Music Scores Type Book Chapter
  Year 2012 Publication Pattern Recognition and Signal Processing in Archaeometry: Mathematical and Computational Solutions for Archaeology Abbreviated Journal  
  Volume Issue Pages (down) 27-63  
  Keywords  
  Abstract The aim of writer identification is determining the writer of a piece of handwriting from a set of writers. In this paper we present a system for writer identification in old handwritten music scores. Even though an important amount of compositions contains handwritten text in the music scores, the aim of our work is to use only music notation to determine the author. The steps of the system proposed are the following. First of all, the music sheet is preprocessed and normalized for obtaining a single binarized music line, without the staff lines. Afterwards, 100 features are extracted for every music line, which are subsequently used in a k-NN classifier that compares every feature vector with prototypes stored in a database. By applying feature selection and extraction methods on the original feature set, the performance is increased. The proposed method has been tested on a database of old music scores from the 17th to 19th centuries, achieving a recognition rate of about 95%.  
  Address  
  Corporate Author Thesis  
  Publisher IGI-Global Place of Publication Editor Copnstantin Papaodysseus  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ FLS2012 Serial 1828  
Permanent link to this record
 

 
Author Adria Rico; Alicia Fornes edit   pdf
doi  openurl
  Title Camera-based Optical Music Recognition using a Convolutional Neural Network Type Conference Article
  Year 2017 Publication 12th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages (down) 27-28  
  Keywords optical music recognition; document analysis; convolutional neural network; deep learning  
  Abstract Optical Music Recognition (OMR) consists in recognizing images of music scores. Contrary to expectation, the current OMR systems usually fail when recognizing images of scores captured by digital cameras and smartphones. In this work, we propose a camera-based OMR system based on Convolutional Neural Networks, showing promising preliminary results  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG;600.097; 600.121 Approved no  
  Call Number Admin @ si @ RiF2017 Serial 3059  
Permanent link to this record
 

 
Author Juan Ignacio Toledo; Manuel Carbonell; Alicia Fornes; Josep Llados edit  url
openurl 
  Title Information Extraction from Historical Handwritten Document Images with a Context-aware Neural Model Type Journal Article
  Year 2019 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 86 Issue Pages (down) 27-36  
  Keywords Document image analysis; Handwritten documents; Named entity recognition; Deep neural networks  
  Abstract Many historical manuscripts that hold trustworthy memories of the past societies contain information organized in a structured layout (e.g. census, birth or marriage records). The precious information stored in these documents cannot be effectively used nor accessed without costly annotation efforts. The transcription driven by the semantic categories of words is crucial for the subsequent access. In this paper we describe an approach to extract information from structured historical handwritten text images and build a knowledge representation for the extraction of meaning out of historical data. The method extracts information, such as named entities, without the need of an intermediate transcription step, thanks to the incorporation of context information through language models. Our system has two variants, the first one is based on bigrams, whereas the second one is based on recurrent neural networks. Concretely, our second architecture integrates a Convolutional Neural Network to model visual information from word images together with a Bidirecitonal Long Short Term Memory network to model the relation among the words. This integrated sequential approach is able to extract more information than just the semantic category (e.g. a semantic category can be associated to a person in a record). Our system is generic, it deals with out-of-vocabulary words by design, and it can be applied to structured handwritten texts from different domains. The method has been validated with the ICDAR IEHHR competition protocol, outperforming the existing approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 601.311; 603.057; 600.084; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ TCF2019 Serial 3166  
Permanent link to this record
 

 
Author Alicia Fornes; Josep Llados; Gemma Sanchez edit  openurl
  Title Old Handwritten Musical Symbol Classification by a Dynamic Time Warping Based Method Type Conference Article
  Year 2007 Publication Seventh IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages (down) 26–27  
  Keywords  
  Abstract  
  Address Curitiba (Brazil)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG Approved no  
  Call Number DAG @ dag @ FLS2007 Serial 887  
Permanent link to this record
 

 
Author Klaus Broelemann; Anjan Dutta; Xiaoyi Jiang; Josep Llados edit   pdf
doi  isbn
openurl 
  Title Hierarchical Plausibility-Graphs for Symbol Spotting in Graphical Documents Type Book Chapter
  Year 2014 Publication Graphics Recognition. Current Trends and Challenges Abbreviated Journal  
  Volume 8746 Issue Pages (down) 25-37  
  Keywords  
  Abstract Graph representation of graphical documents often suffers from noise such as spurious nodes and edges, and their discontinuity. In general these errors occur during the low-level image processing viz. binarization, skeletonization, vectorization etc. Hierarchical graph representation is a nice and efficient way to solve this kind of problem by hierarchically merging node-node and node-edge depending on the distance. But the creation of hierarchical graph representing the graphical information often uses hard thresholds on the distance to create the hierarchical nodes (next state) of the lower nodes (or states) of a graph. As a result, the representation often loses useful information. This paper introduces plausibilities to the nodes of hierarchical graph as a function of distance and proposes a modified algorithm for matching subgraphs of the hierarchical graphs. The plausibility-annotated nodes help to improve the performance of the matching algorithm on two hierarchical structures. To show the potential of this approach, we conduct an experiment with the SESYD dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor Bart Lamiroy; Jean-Marc Ogier  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-662-44853-3 Medium  
  Area Expedition Conference  
  Notes DAG; 600.045; 600.056; 600.061; 600.077 Approved no  
  Call Number Admin @ si @ BDJ2014 Serial 2699  
Permanent link to this record
 

 
Author Arnau Baro; Pau Riba; Jorge Calvo-Zaragoza; Alicia Fornes edit   pdf
doi  openurl
  Title Optical Music Recognition by Recurrent Neural Networks Type Conference Article
  Year 2017 Publication 14th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages (down) 25-26  
  Keywords Optical Music Recognition; Recurrent Neural Network; Long Short-Term Memory  
  Abstract Optical Music Recognition is the task of transcribing a music score into a machine readable format. Many music scores are written in a single staff, and therefore, they could be treated as a sequence. Therefore, this work explores the use of Long Short-Term Memory (LSTM) Recurrent Neural Networks for reading the music score sequentially, where the LSTM helps in keeping the context. For training, we have used a synthetic dataset of more than 40000 images, labeled at primitive level  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.097; 601.302; 600.121 Approved no  
  Call Number Admin @ si @ BRC2017 Serial 3056  
Permanent link to this record
 

 
Author Partha Pratim Roy; Umapada Pal; Josep Llados edit  url
doi  openurl
  Title Seal Object Detection in Document Images using GHT of Local Component Shapes Type Conference Article
  Year 2010 Publication 10th ACM Symposium On Applied Computing Abbreviated Journal  
  Volume Issue Pages (down) 23–27  
  Keywords  
  Abstract Due to noise, overlapped text/signature and multi-oriented nature, seal (stamp) object detection involves a difficult challenge. This paper deals with automatic detection of seal from documents with cluttered background. Here, a seal object is characterized by scale and rotation invariant spatial feature descriptors (distance and angular position) computed from recognition result of individual connected components (characters). Recognition of multi-scale and multi-oriented component is done using Support Vector Machine classifier. Generalized Hough Transform (GHT) is used to detect the seal and a voting is casted for finding possible location of the seal object in a document based on these spatial feature descriptor of components pairs. The peak of votes in GHT accumulator validates the hypothesis to locate the seal object in a document. Experimental results show that, the method is efficient to locate seal instance of arbitrary shape and orientation in documents.  
  Address Sierre, Switzerland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SAC  
  Notes DAG Approved no  
  Call Number DAG @ dag @ RPL2010a Serial 1291  
Permanent link to this record
 

 
Author Jaume Gibert; Ernest Valveny; Horst Bunke edit  doi
isbn  openurl
  Title Dimensionality Reduction for Graph of Words Embedding Type Conference Article
  Year 2011 Publication 8th IAPR-TC-15 International Workshop. Graph-Based Representations in Pattern Recognition Abbreviated Journal  
  Volume 6658 Issue Pages (down) 22-31  
  Keywords  
  Abstract The Graph of Words Embedding consists in mapping every graph of a given dataset to a feature vector by counting unary and binary relations between node attributes of the graph. While it shows good properties in classification problems, it suffers from high dimensionality and sparsity. These two issues are addressed in this article. Two well-known techniques for dimensionality reduction, kernel principal component analysis (kPCA) and independent component analysis (ICA), are applied to the embedded graphs. We discuss their performance compared to the classification of the original vectors on three different public databases of graphs.  
  Address Münster, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Xiaoyi Jiang; Miquel Ferrer; Andrea Torsello  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-20843-0 Medium  
  Area Expedition Conference GbRPR  
  Notes DAG Approved no  
  Call Number Admin @ si @ GVB2011a Serial 1743  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: