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Abstract—When transcribing handwritten document images,
inaccuracies in the text segmentation step often cause errors in
the subsequent transcription step. For this reason, some recent
methods propose to perform the recognition at paragraph level.
But still, errors in the segmentation of paragraphs can affect
the transcription performance. In this work, we propose an
end-to-end framework to transcribe full pages. The joint text
detection and transcription allows to remove the layout analysis
requirement at test time. The experimental results show that our
approach can achieve comparable results to models that assume
segmented paragraphs, and suggest that joining the two tasks
brings an improvement over doing the two tasks separately.

Index Terms—Handwritten Text Recognition; Layout Analysis;
Text segmentation; Deep Neural Networks; Multi-task learning

I. INTRODUCTION

In the last years, the performance of handwritten text
recognition (HTR) methods has significantly improved with
the arrival of new deep convolutional network architectures
and attention models [1], [2]. Nevertheless, when transcribing
document images, layout analysis (i.e. word, line or paragraph
segmentation) is a required previous task that usually supposes
a source of error [3], [4]. Traditionally, methods for transcrip-
tion of handwritten documents rely on the output of some
post-processing steps to obtain the different segmented objects,
i.e., lines or words depending on the level of recognition that
the method works [5], [6]. It is for sure known that the per-
formance of those methods is conditioned by the correctness
of the output from the segmentation step. In the other way
around to provide a good segmentation it would be beneficial
to have the transcription of the word. This dilemma is defined
by the well-known Sayre’s paradox: a good segmentation is
necessary for a good recognition and vice-versa.

Many HTR methods perform a joint segmentation and
recognition at line level to cope with the above mentioned
paradox. In this way, they can avoid the segmentation at char-
acter and word level. However, this is only partially solving
the segmentation problem, because lines that are not properly
segmented obviously affect the recognition at line level. For
this reason, some recent approaches propose to recognize text
at paragraph level [2], [7]. But still, an inaccurate segmentation
into paragraphs will affect the HTR performance.

If we put the view into another domain such as the detection
of text in the wild, where we encounter text in cluttered
images, the task is usually divided into first localizing the

text, and then transcribing the detected region [8]. Recent
work in scene text detection [9] [10] [11] claimed that a
single end-to-end model to jointly localize and transcribe
words can reduce intermediate step error thereby leading to
better detection results, and consequently, better transcriptions.
The intuition behind this phenomena would be that giving
transcription annotations gives additional valuable information
to the detection model.

One may think that this principle applies in handwritten
documents as well. In the few last years some works have ap-
peared in the domain of the document transcription following
an idea similar to the end-to-end models. However, in [12]
this statement is put under doubt, since the best transcription
performance is achieved by detecting the start of text line,
segmenting it with a line follower and then transcribing it
with three separately trained networks. Nevertheless no results
are shown regarding the end-to-end trained model approach to
come to a definitive conclusion.

In [13] a method to join the two tasks is proposed by
predicting the text line beginning and letting the recognition
network predict the characters till the end of the line without
having an explicit end of line segmentation. The drawback of
this method is that it does not attempt to backpropagate the
recognition errors to the segmentation which might make it
difficult to achieve a high performance on difficult benchmark
datasets. In [14] the results of transcribing full paragraphs
by implicitly segmenting lines with attention are comparable
with the traditional automatic line segmentation methods, but
the lack of a comparison using the state of the art neural
segmentation separate system followed by the CRNN archi-
tecture prevents from concluding whether performing both
tasks jointly supposes an advantage or not. In [15] a three-
stage model is proposed by joining a two stage detection
network with large feature extractor such as ResNet-50 with
a recognition CNN.

In this paper we propose a end-to-end model for text detec-
tion and recognition at page level. Our method jointly performs
text detection and transcription, and thus, the transcription
network can benefit from shared features on the detection. In
addition, we evaluate our method with an ablation study that
suggests that there are benefits in the end-to-end approach over
training two models separately.

The rest of the paper is organized as follows, first, in section



Fig. 1. Overview of the proposed method. We extract convolutional features using FPN. The classification and regression branches calculate the positive
boxes and the recognition branch predicts the transcription of the content of each box. Binary cross entropy, squared-sum and CTC losses are backpropagated
through the whole model.

II we describe the proposed model architecture, including
the feature extractor, detection and recognition modules. In
Section III, we test the proposed method and perform an
ablation study to compare our approach with a traditional two-
step method. In the last section we draw the conclusions of
the work and outline possible continuation lines.

II. METHODOLOGY

As explained in the previous section, most of the existing
approaches for automatic handwritten text recognition consist
of separated models for localizing and transcribing the text.
Contrary, in this work we propose a method to exploit the
benefits of deep neural architectures for multitasking, and to
evaluate its performance compared to traditional approaches.
For this purpose, we built a neural model to recognize the
text from either a page or paragraph image, by detecting each
word and transcribing its content. The architecture consists of
four connected deep neural networks, one for extracting page
or paragraph features (ResNet18 + feature pyramid network),
another for detecting the existence of text in each part of the
image (classification/objectness branch), another to regress
the bounding box of each one of the words in a image
(regression branch), and a recognition branch (conv+blstm).
An overview of the whole model can be seen in Figure 1.

A. Feature extractor

The first module of our model is a deep feature extractor,
whose weights are shared for the recognition and detection
tasks. Taking into account that the localization of text in
a scanned document (where we are previously aware of its
existence) might be easier than detecting an object in the
wild, we have chosen the ResNet18 [16], a light state-of-the-
art architecture for object detection and classification. This
architecture consists of 5 convolutional residual blocks, i.e. 2

convolutions with rectifier linear unit activation and a residual
connection.The detailed list of blocks and their configuration
is shown in Table I.

TABLE I
RESNET18 ARCHITECTURE USED FOR FEATURE EXTRACTION.

Layer output shape kernel size # kernels
res-conv-block 1 H/2·W/2 3 x 3 64
res-conv-block 2 H/4·W/4 3 x 3 64
res-conv-block 3 H/8·W/8 3 x 3 128
res-conv-block 4 H/16·W/16 3 x 3 256
res-conv-block 5 H/32·W/32 3 x 3 512

We have tried other even lighter configurations, but when re-
ducing the amount of layers, we observed slower convergence
and worse final results. This was most probably caused by
noisy detections and false positives, confusing text with non-
relevant text. For this reason we have chosen an intermediate
depth architecture that allowed regressing the characteristics
of the text, and skipping the step of separating the regions of
interest (i.e. including the layout analysis step in the whole
process).

Based on recent work on object detection, we build a
feature pyramid network (FPN) [17] which combines the
extracted deep features of different levels of abstraction by
means of deconvolutions. These type of layers consist of
bilinear interpolation to apply differentiable upscaling of the
high level features, followed by convolutions to reduce the
number of channels, allowing to add them to lower level
features. A diagram of this module is shown in Figure 2.
This approach gave a boost in performance to detect objects
at different scales, which is definitely also a beneficial feature
for localizing text in documents.



Fig. 2. Feature pyramid network. It consists of 5 ResNet18 convolutional blocks followed by residual connections plus deconvolutions [17]. The input is an
image of shape H ·W · 3, the output is 5 tensors of 256 channels with down sampling factors of 4,8,16,32 and 64 respectively.

B. Classification and Regression branches

For each one of the levels of the pyramid, the extracted
features are fed to the classification network, which after four
convolutions will predict the probability of the presence of a
text object for each point of the image grid.

After predicting the class probabilities vector pcl, the binary
cross entropy (CE) loss is calculated and backpropagated
through the classification branch and shared feature network.
Formally, CE is computed as follows:

CE(pcl) = −(ycl · log(pcl) + (1− ycl) · log(1− pcl)) (1)

In this case pcl predicts the probability of the object of being
text or not, i.e. it is used as an ”objectness” value but it could
also be used to predict which kind of text it is (e.g. handwritten
or printed). In a similar way, the regression network receives
the whole page image features and after four convolutions,
it regresses the box coordinate offsets from the predefined
anchors. Formally:

x = X + dx ·W
y = Y + dy ·H
w = edw ·W
h = edh ·H (2)

where (x, y, w, h) are the predicted box coordinates,
dx, dy, dw, dh are the predicted offsets and X,Y,W,H are
the predefined anchor box values. The anchors are generated
as the combination of the ratios 1

2 ,1,2 and the scales 1, 2
1
3 ,

2
2
3 with a base size of 32 (9 anchors) as shown in figure II-B

. The offsets are regressed by minimizing the mean square
error:

MSE(δ, δ′) =
1

n

n∑
i

(δi − δ′i)2 (3)

where δi is the vector of target offsets from the anchors for
the i-th ground truth box.

Fig. 3. We used 9 predefined anchors, result of combining three ratios 1
2

,1,2

and scales 1, 2
1
3 , 2

2
3 .

Once class probabilities and box offsets are predicted, the
box sampler computes the bounding box coordinates for those
anchors in the image grid whose class probability surpasses
a given threshold. Once the box coordinates are calculated,
we apply non-maximal suppression based on the maximum
class score of each box. This will make that only a variable
number of boxes with high confidence are going to be fed to
the recognition branch.

C. Recognition branch

This module takes as inputs the features extracted with
the FPN network and the corresponding regressed boxes and
returns a probability tensor of variable width per alphabet
length corresponding to the possible transcriptions of the
words. Since the features are computed at page level we first
need to apply some strategy that crops these features to be
the input of the different successive layers in the module.
This crop could be done in different ways, such as Region of
Interest (ROI) pooling [18] strategies or affine transformation
followed by Bilinear Sampling [19]. Since words in handwrit-
ten documents are mostly horizontally oriented and have no
significant skew as it would happen in text in the wild data,
for each regressed box, we apply RoI pooling to the page
image features. Equivalently, for more complex distribution of
documents with significant skew, or text orientation variations,
affine transformations would allow to predict text skew or
vertical orientation. The pooled features are rescaled to a
fixed predefined height H ′ and variable width W ′, followed
by padding to allow later addition of fully connected layers.
For the recognition part we use a standard CRNN architecture



containing 2 convolutional layers, 2 bidirectional long short-
term memory layers [20], and a fully connected layer.

To optimize the model for recognition we calculate the
Connectionnist Temporal Classification loss [21], which trans-
forms variable-width feature tensor into a conditional probabil-
ity distribution over label sequence, using a collapse function
B that joins repeated output characters not separated by blank
(non-character). For example B(hheeel-llo)=hello. At each
time step we choose the maximum probable character, how-
ever, we agree that prefix beam search decoding from recog-
nition branch output matrix P ∈ M(Tsteps · alphabet length)
probabilities using a language model might improve the per-
formance.

Formally, the CTC loss function can be represented as the
maximum likelihood error of the sequence labeling:

OML(D, Y ′) = −
∑

(x,y)∈D

ln(p(y|x)) (4)

where D = (x, y)i=N
i=1 is the set of training input-target pairs

and Y ′ is the set of network sequence outputs. To get the final
full page transcription we concatenate the word predictions
in a rule based reading order calculation from the word box
coordinates. It consists of a projection of the word boxes to
get text line continuation groups.

III. EXPERIMENTS

This section is devoted to the experimental evaluation. We
describe the dataset and the task to be realized, the different
metrics and discuss the results.

A. Database and Task description

We tested our method on the IAM [22] database, a multi-
writer handwritten document collection with ground-truth at
page level. It consists of 1539 pages of scanned text, written by
657 different writers, including a total of 13.353 annotated text
lines and 115.320 words. Pages were scanned at a resolution
of 300dpi (2479 × 3542) saved as PNG images with 256 gray
levels. For our work, due to our limited GPU space we rescale
the images to 150dpi (1240 × 1753). In our partition we use
1198 page images, 747 for training and 451 for validation/test.

The objective task works as follows: Given an input sample
page, the system localizes the text and transcribes it without
any preprocessing steps based on layout analysis techniques,
i.e. there is no segmentation into words, lines nor paragraphs.

B. Metrics

Two different metrics have been used in the experimental
evaluation of the proposed methodology. One to evaluate the
performance of the text detection and another for transcription.

To evaluate the performance in text localization, we used the
mean Average Precision (mAP), the standard metric in object
detection. Let p = TP

TP+FP be the precision metric, i.e. the
number of true positives out of the total positive detections;
r = TP

TP+FN be the recall metric, i.e. the number of true
positives out of the total ground truth positives, i.e. the true
positives plus false negatives. We consider the recall-precision

map, p : [0, 1] 7→ [0, 1] which maps the recall value r to the
precision p that we would get if we had the detection threshold
to get such a recall. Then, the Average Precision is the value∫ 1

0
p(r), i.e. the area under the precision-recall graph.

As a transcription score we choose the character error rate
(CER), i.e. the number of insertions, deletions and substitu-
tions to convert the output string into the ground-truthed one,
divided by the length of the string. Formally:

CER =
i+ s+ d

label length

C. End-to-end vs separate training

The performance of our method in terms of the CER and
mAP is shown Table II. As stated in the introduction, we
also include an ablation study to assess the model visual
capabilities when combining the text location and transcription
annotations. Concretely, we are interested in the interaction of
the learning processes of text localization and transcription.
To evaluate the benefits of the intermediate error reduction,
we compare the end-to-end versus the two-step training, i.e.
separating localization and transcription. For the end-to-end
training, approach we feed the full page image as an input,
pass the predicted bounding boxes to the RoI pooling layer
and back-propagate the 3 summed losses: CTC, classification
and regression. Since our end goal is to get the best possible
transcription, we use the validation character error rate as
the early stop criterion. A main advantage in using end-to-
end with RoI pooling instead from page features instead of
training separately and cropping the predicted boxes directly
from input image is that in the first approach the features
contain contextual information that allows some error in the
segmentation while still getting the correct transcription, as
seen in figure 5

For the two-step training we first train the model by only
back-propagating the regression and classification losses, and
use as a early stop criterion the mean average precision of
the validation detections (mAP). This means that we train
the whole model, ignoring the recognition branch, to get best
possible detections in the hypothetical case that we could not
do the two tasks jointly. With this approach the model finished
the training stage with a mAP of 0.9. When the detection
training is finished, we train the whole model, but this time
we ignore the classification and regression branches. Here we
only backpropagate the CTC loss, using the ground truth word
segmentation in the RoI pooling step, i.e. to get the separate
best possible transcription using the same architecture as in
the end-to-end approach.

Figure 6 presents a comparison of the behaviour (in CER)
of both approaches: the separate recognition training and the
end-to-end one, where we use the predicted segmentations
and backpropagate the classification and regression losses. As
expected the curve belonging to the separate is much smoother
and decreases fast since there is no noise in the segmentation
of the words. Nonetheless, we can see that in general, the
end-to-end method is not far away from the separate one, and



TABLE II
COMPARISON OF METHODS FOR FULL PAGE / PARAGRAPH RECOGNITION WITHOUT LANGUAGE MODEL.

Val CER (%) Test CER (%) Detection mAP Segmentation Page resolution End-to-end
at test time feed forward

Ours (end-to-end) 13.8 15.6 0.89 Full page 150dpi YES
Ours (separate) 10.5 19.3 0.9 Full page 150dpi NO

Ours (HTR using test GT boxes) - 15.5 - Word 150dpi NO
Bluche et al. [2] - 7.9* - Paragraph 150dpi YES
Puigcerver [7] - 5.8* - Paragraph - YES

in the end, the difference in CER values is not significant.
Looking at test time, the performance of the CER in both
methodologies is the reverse, the end-to-end method is able
to generalize better than the separate one, and gives a lower
CER as shown in Table II.

In addition, we evaluate the separate trained approach using
the ground truth test word segmentation, to know which is
the best transcription we could get at test time by using
our architecture. Surprisingly, the CER in this case is not
significantly lower than the end-to-end approach, which does
not use segmentation at all.

Finally, Table II compares our method to some existing
methods in the literature. As far as we know, there is no
previous existing work that shows the transcription results
for the actual full pages. For this reason, we have chosen
two methods that work at paragraph level, as the closest
segmentation level to our work. Note that both approaches
[2], [7] use the segmented paragraph as input. Moreover, the
method described in [7] also uses data augmentation, which
also brings a boost in performance. Also, we evaluate the
character error rate at full page instead of line level, ignoring
special characters and considering all characters lower case.
Consequently, these results are not directly comparable to
our work. In any case, we can observe that our method is
competitive, especially taking into account that it does not
require any kind of layout analysis.

Some qualitative results are shown in Figures 4 and 5. As it
can be observed, most errors come from the miss-recognition
of some characters. Looking in deep at those errors, we realize
that humans could make the same mistakes if they only rely
on the visual appearance of text. Of course, dictionaries and
language models could help to reduce this kind of errors. For
example, the last predicted word shown in Fig.5 would be
correctly transcribed as ”colleagues” instead of ”caleagues”.

In summary, from the results we can conclude that our end-
to-end approach is a promising technique in segmentation-free
text recognition scenarios, and it can serve as a baseline for
future works.

IV. CONCLUSIONS AND FUTURE WORK

We have proposed an end-to-end method for text detec-
tion and recognition. It addresses the potential improvements
suggested in previous HTR works by recognizing the text in
a full page in a single feed forward end-to-end model. The
model successfully allows end-to-end training backpropagat-
ing output transcription error to segmentation layers. This

Fig. 4. Example of Localized words in a page from the IAM dataset.

Fig. 5. Example predictions on unseen page. Note that by predicting the text
sequence from pooled regions instead of the input image in an end to end
fashion, the model is able to handle segmentation errors.



Fig. 6. Character Error Rates for the Validation set. We compare the separate
recognition training vs the end-to-end training.

brings a couple of benefits and limitations. First, there is
an intermediate step reduction with respect to the separate
approach. The improvement could be caused by multiple
reasons. One is the intended effect of backpropagating of the
transcription (CTC) loss that leads to more adequate segmen-
tation (but not necessarily with a higher detection score) at
test time. Another possible cause is the regularization effect
of training the recognition with more noisy segmentation, that
prevents the model from overfit to the data. A unquestionable
improvement is that this approach brings an inference time
reduction, so for transcribing a large dataset the total difference
might be significant. It would be interesting to perform some
experiments in this direction and study in depth the causes of
the improvement when the training is end-to-end.

It is also noticeable the memory usage reduction at inference
time by sharing the model parameters for localization and
transcription, and only seeing the page image once to predict
the transcriptions, instead of having to work with two separate
models. However, at training time it is necessary a high capac-
ity GPU (at least 10GB) to load the recognition branch which
increases the memory requirements significantly. To decode
the output of our model we use a rule based reading order
extractor from the word boxes. A possible future improvement
to handle other arbitrary reading orders would be to add a
sorting decoder RNN, inspired by the attention layer in [2].

In the near future we plan to concatenate the detected words
in lines before the RoI pooling. This would allow to train
with documents where the ground truth is not at segmentation
level (i.e. only the transcription is available). Also, in the
case of documents with text in different orientations, affine
transformation with bilinear sampling as in [19] could be used
instead of the RoI pooling.
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