toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Debora Gil; Oriol Ramos Terrades; Elisa Minchole; Carles Sanchez; Noelia Cubero de Frutos; Marta Diez-Ferrer; Rosa Maria Ortiz; Antoni Rosell edit   pdf
url  openurl
  Title Classification of Confocal Endomicroscopy Patterns for Diagnosis of Lung Cancer Type Conference Article
  Year 2017 Publication 6th Workshop on Clinical Image-based Procedures: Translational Research in Medical Imaging Abbreviated Journal  
  Volume 10550 Issue Pages (down) 151-159  
  Keywords  
  Abstract Confocal Laser Endomicroscopy (CLE) is an emerging imaging technique that allows the in-vivo acquisition of cell patterns of potentially malignant lesions. Such patterns could discriminate between inflammatory and neoplastic lesions and, thus, serve as a first in-vivo biopsy to discard cases that do not actually require a cell biopsy.

The goal of this work is to explore whether CLE images obtained during videobronchoscopy contain enough visual information to discriminate between benign and malign peripheral lesions for lung cancer diagnosis. To do so, we have performed a pilot comparative study with 12 patients (6 adenocarcinoma and 6 benign-inflammatory) using 2 different methods for CLE pattern analysis: visual analysis by 3 experts and a novel methodology that uses graph methods to find patterns in pre-trained feature spaces. Our preliminary results indicate that although visual analysis can only achieve a 60.2% of accuracy, the accuracy of the proposed unsupervised image pattern classification raises to 84.6%.

We conclude that CLE images visual information allow in-vivo detection of neoplastic lesions and graph structural analysis applied to deep-learning feature spaces can achieve competitive results.
 
  Address Quebec; Canada; September 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CLIP  
  Notes IAM; 600.096; 600.075; 600.145;DAG Approved no  
  Call Number Admin @ si @ GRM2017 Serial 2957  
Permanent link to this record
 

 
Author Josep Llados; Jaime Lopez-Krahe; Enric Marti edit   pdf
doi  openurl
  Title A system to understand hand-drawn floor plans using subgraph isomorphism and Hough transform Type Book Chapter
  Year 1997 Publication Machine Vision and Applications Abbreviated Journal  
  Volume 10 Issue 3 Pages (down) 150-158  
  Keywords Line drawings – Hough transform – Graph matching – CAD systems – Graphics recognition  
  Abstract Presently, man-machine interface development is a widespread research activity. A system to understand hand drawn architectural drawings in a CAD environment is presented in this paper. To understand a document, we have to identify its building elements and their structural properties. An attributed graph structure is chosen as a symbolic representation of the input document and the patterns to recognize in it. An inexact subgraph isomorphism procedure using relaxation labeling techniques is performed. In this paper we focus on how to speed up the matching. There is a building element, the walls, characterized by a hatching pattern. Using a straight line Hough transform (SLHT)-based method, we recognize this pattern, characterized by parallel straight lines, and remove from the input graph the edges belonging to this pattern. The isomorphism is then applied to the remainder of the input graph. When all the building elements have been recognized, the document is redrawn, correcting the inaccurate strokes obtained from a hand-drawn input.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG;IAM Approved no  
  Call Number IAM @ iam @ LLM1997a Serial 1566  
Permanent link to this record
 

 
Author Anders Hast; Alicia Fornes edit   pdf
doi  openurl
  Title A Segmentation-free Handwritten Word Spotting Approach by Relaxed Feature Matching Type Conference Article
  Year 2016 Publication 12th IAPR Workshop on Document Analysis Systems Abbreviated Journal  
  Volume Issue Pages (down) 150-155  
  Keywords  
  Abstract The automatic recognition of historical handwritten documents is still considered challenging task. For this reason, word spotting emerges as a good alternative for making the information contained in these documents available to the user. Word spotting is defined as the task of retrieving all instances of the query word in a document collection, becoming a useful tool for information retrieval. In this paper we propose a segmentation-free word spotting approach able to deal with large document collections. Our method is inspired on feature matching algorithms that have been applied to image matching and retrieval. Since handwritten words have different shape, there is no exact transformation to be obtained. However, the sufficient degree of relaxation is achieved by using a Fourier based descriptor and an alternative approach to RANSAC called PUMA. The proposed approach is evaluated on historical marriage records, achieving promising results.  
  Address Santorini; Greece; April 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG; 602.006; 600.061; 600.077; 600.097 Approved no  
  Call Number HaF2016 Serial 2753  
Permanent link to this record
 

 
Author Muhammad Muzzamil Luqman; Thierry Brouard; Jean-Yves Ramel; Josep Llados edit  openurl
  Title Recherche de sous-graphes par encapsulation floue des cliques d'ordre 2: Application à la localisation de contenu dans les images de documents graphiques Type Conference Article
  Year 2012 Publication Colloque International Francophone sur l'Écrit et le Document Abbreviated Journal  
  Volume Issue Pages (down) 149-162  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CIFED  
  Notes DAG Approved no  
  Call Number Admin @ si @ LBR2012 Serial 2382  
Permanent link to this record
 

 
Author Francisco Alvaro; Francisco Cruz; Joan Andreu Sanchez; Oriol Ramos Terrades; Jose Miguel Benedi edit   pdf
doi  openurl
  Title Structure Detection and Segmentation of Documents Using 2D Stochastic Context-Free Grammars Type Journal Article
  Year 2015 Publication Neurocomputing Abbreviated Journal NEUCOM  
  Volume 150 Issue A Pages (down) 147-154  
  Keywords document image analysis; stochastic context-free grammars; text classi cation features  
  Abstract In this paper we de ne a bidimensional extension of Stochastic Context-Free Grammars for structure detection and segmentation of images of documents.
Two sets of text classi cation features are used to perform an initial classi cation of each zone of the page. Then, the document segmentation is obtained as the most likely hypothesis according to a stochastic grammar. We used a dataset of historical marriage license books to validate this approach. We also tested several inference algorithms for Probabilistic Graphical Models
and the results showed that the proposed grammatical model outperformed
the other methods. Furthermore, grammars also provide the document structure
along with its segmentation.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 601.158; 600.077; 600.061 Approved no  
  Call Number Admin @ si @ ACS2015 Serial 2531  
Permanent link to this record
 

 
Author Stepan Simsa; Milan Sulc; Michal Uricar; Yash Patel; Ahmed Hamdi; Matej Kocian; Matyas Skalicky; Jiri Matas; Antoine Doucet; Mickael Coustaty; Dimosthenis Karatzas edit   pdf
url  openurl
  Title DocILE Benchmark for Document Information Localization and Extraction Type Conference Article
  Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 14188 Issue Pages (down) 147–166  
  Keywords Document AI; Information Extraction; Line Item Recognition; Business Documents; Intelligent Document Processing  
  Abstract This paper introduces the DocILE benchmark with the largest dataset of business documents for the tasks of Key Information Localization and Extraction and Line Item Recognition. It contains 6.7k annotated business documents, 100k synthetically generated documents, and nearly 1M unlabeled documents for unsupervised pre-training. The dataset has been built with knowledge of domain- and task-specific aspects, resulting in the following key features: (i) annotations in 55 classes, which surpasses the granularity of previously published key information extraction datasets by a large margin; (ii) Line Item Recognition represents a highly practical information extraction task, where key information has to be assigned to items in a table; (iii) documents come from numerous layouts and the test set includes zero- and few-shot cases as well as layouts commonly seen in the training set. The benchmark comes with several baselines, including RoBERTa, LayoutLMv3 and DETR-based Table Transformer; applied to both tasks of the DocILE benchmark, with results shared in this paper, offering a quick starting point for future work. The dataset, baselines and supplementary material are available at https://github.com/rossumai/docile.  
  Address San Jose; CA; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ SSU2023 Serial 3903  
Permanent link to this record
 

 
Author Pau Torras; Mohamed Ali Souibgui; Jialuo Chen; Alicia Fornes edit  url
openurl 
  Title A Transcription Is All You Need: Learning to Align through Attention Type Conference Article
  Year 2021 Publication 14th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume 12916 Issue Pages (down) 141–146  
  Keywords  
  Abstract Historical ciphered manuscripts are a type of document where graphical symbols are used to encrypt their content instead of regular text. Nowadays, expert transcriptions can be found in libraries alongside the corresponding manuscript images. However, those transcriptions are not aligned, so these are barely usable for training deep learning-based recognition methods. To solve this issue, we propose a method to align each symbol in the transcript of an image with its visual representation by using an attention-based Sequence to Sequence (Seq2Seq) model. The core idea is that, by learning to recognise symbols sequence within a cipher line image, the model also identifies their position implicitly through an attention mechanism. Thus, the resulting symbol segmentation can be later used for training algorithms. The experimental evaluation shows that this method is promising, especially taking into account the small size of the cipher dataset.  
  Address Virtual; September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG; 602.230; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ TSC2021 Serial 3619  
Permanent link to this record
 

 
Author Agnes Borras; Josep Llados edit   pdf
openurl 
  Title A Multi-Scale Layout Descriptor Based on Delaunay Triangulation for Image Retrieval Type Conference Article
  Year 2008 Publication 3rd International Conference on Computer Vision Theory and Applications VISAPP (2) 2008 Abbreviated Journal  
  Volume 2 Issue Pages (down) 139-144  
  Keywords  
  Abstract  
  Address Funchal, Madeira (Portugal)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number DAG @ dag @ BoL2008 Serial 981  
Permanent link to this record
 

 
Author Juan Ignacio Toledo; Jordi Cucurull; Jordi Puiggali; Alicia Fornes; Josep Llados edit  url
doi  openurl
  Title Document Analysis Techniques for Automatic Electoral Document Processing: A Survey Type Conference Article
  Year 2015 Publication E-Voting and Identity, Proceedings of 5th international conference, VoteID 2015 Abbreviated Journal  
  Volume Issue Pages (down) 139-141  
  Keywords Document image analysis; Computer vision; Paper ballots; Paper based elections; Optical scan; Tally  
  Abstract In this paper, we will discuss the most common challenges in electoral document processing and study the different solutions from the document analysis community that can be applied in each case. We will cover Optical Mark Recognition techniques to detect voter selections in the Australian Ballot, handwritten number recognition for preferential elections and handwriting recognition for write-in areas. We will also propose some particular adjustments that can be made to those general techniques in the specific context of electoral documents.  
  Address Bern; Switzerland; September 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference VoteID  
  Notes DAG; 600.061; 602.006; 600.077 Approved no  
  Call Number Admin @ si @ TCP2015 Serial 2641  
Permanent link to this record
 

 
Author George Tom; Minesh Mathew; Sergi Garcia Bordils; Dimosthenis Karatzas; CV Jawahar edit  url
openurl 
  Title Reading Between the Lanes: Text VideoQA on the Road Type Conference Article
  Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 14192 Issue Pages (down) 137–154  
  Keywords VideoQA; scene text; driving videos  
  Abstract Text and signs around roads provide crucial information for drivers, vital for safe navigation and situational awareness. Scene text recognition in motion is a challenging problem, while textual cues typically appear for a short time span, and early detection at a distance is necessary. Systems that exploit such information to assist the driver should not only extract and incorporate visual and textual cues from the video stream but also reason over time. To address this issue, we introduce RoadTextVQA, a new dataset for the task of video question answering (VideoQA) in the context of driver assistance. RoadTextVQA consists of 3, 222 driving videos collected from multiple countries, annotated with 10, 500 questions, all based on text or road signs present in the driving videos. We assess the performance of state-of-the-art video question answering models on our RoadTextVQA dataset, highlighting the significant potential for improvement in this domain and the usefulness of the dataset in advancing research on in-vehicle support systems and text-aware multimodal question answering. The dataset is available at http://cvit.iiit.ac.in/research/projects/cvit-projects/roadtextvqa.  
  Address San Jose; CA; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ TMG2023 Serial 3906  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: