
Structure Detection and Segmentation of Documents

Using 2D Stochastic Context-Free Grammars
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Abstract

In this paper we define a bidimensional extension of Stochastic Context-Free
Grammars for structure detection and segmentation of images of documents.
Two sets of text classification features are used to perform an initial classifica-
tion of each zone of the page. Then, the document segmentation is obtained
as the most likely hypothesis according to a stochastic grammar. We used
a dataset of historical marriage license books to validate this approach. We
also tested several inference algorithms for Probabilistic Graphical Models
and the results showed that the proposed grammatical model outperformed
the other methods. Furthermore, grammars also provide the document struc-
ture along with its segmentation.

Keywords: document image analysis, stochastic context-free grammars,
text classification features

1. Introduction

Page segmentation is a fundamental problem of Document Image Analy-
sis (DIA) which is important for solving subsequent document analysis and
recognition problems. Document image segmentation intends to detect ho-
mogeneous relevant zones in a given document and finding out the structural
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relation among these zones [1]. The relevant zones in DIA depend on the
task and they can be drawings, textual zones, special symbols, etc. This pa-
per is focused on determining the structure and the segmentation of textual
zones in images of handwritten historical documents. This step is crucial for
subsequent text recognition processes.

Many successful image segmentation techniques have been defined in the
past for typeset documents [1]. Succesful contests have been held for this
type of documents where a common framework is defined in order to be able
to compare existing techniques [2, 3]. Many proposed techniques are based
on a first step of classification at pixel level, and then a post-processing step
where pixels are grouped into regions to obtain uniform zones [4].

In case of historical handwritten documents, the challenge in image seg-
mentation is to detect homogeneous handwritten zones [5, 6]. Correct de-
tection of textual zones is important for tackling subsequent problems like
line detection and extraction [7] and later transcription or word spotting [8].
This paper is centered on image segmentation of historical handwritten doc-
uments. Developing generic image segmentation techniques for these docu-
ments is a very difficult task due to the absence of general editing rules in
the past, since the editing rules were usually different for each collection.

Many historical handwritten documents exhibit regularities similar to
typeset documents, and image segmentation techniques used for typeset doc-
uments can be considered for historical handwritten documents [9]. Seg-
mentation of this kind of documents has been approached in the past with
geometrical techniques. In [5] projection profiles were mainly used for page
layout analysis of documents with very satisfactory results. But for many
other documents, page segmentation techniques that rely on explicit isolation
of elements like characters, words or lines are often not useful. For those doc-
uments, holistic approaches seem more appropriate. This paper is focused on
this second type of historical handwritten documents, concretely in marriage
license books [10] (see Figure 1).

Marriage license books are documents that were used for centuries to
register marriages in ecclesiastical institutions. Each marriage is represented
by a record and the transcription of these documents has been considered
very interesting for demography and migratory research [11]. Each unit of
information is composed of several related textual regions. Two relevant page
segmentation problems can be stated for these documents. First, to segment
and classify the different textual units of the records. And second, to find
out the syntactic structure of the records in a given page.
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Probabilistic graphical models (PGM) offer a natural framework to tackle
these segmentation problems and to relate segmented units represented here
as random variables, since it easily allows to represent dependencies between
them [12, 13, 14]. However, computing exact inference on these models may
be challenging depending on the structure that they present. In this case we
must resort to other approximate methods like the Graph Cut algorithm [15]
or some variations of the Belief Propagation (BP) algorithm [16]. Within
this formal framework, in [17] a solution is proposed for classifying the dif-
ferent textual zones that are present in marriage license books, although no
structure detection is performed. In that research, pixel classification based
on texture features obtained from the Gabor transform are compared with
Relative Location Features [18]. Both sort of features are combined in a
Conditional Random Field [19] to take into account contextual information
in the classification process of the pixels.

In order to address both the detection of textual zones and the analysis
of structural relationships among these zones, we consider the use of struc-
tural models, such as Stochastic Context-Free Grammars (SCFG). SCFG
are a powerful formalism of Syntactic Pattern Recognition which has been
used previously for Document Image Analysis [20, 21]. Bidimensional SCFG
(2D-SCFG) is a well known formalism that has been studied in the past
for bidimensional parsing [22, 23]. This type of grammars are able to rep-
resent efficiently contextual bidimensional relations that are important for
page segmentation [24]. In this study we propose a formal model that inte-
grates several stochastic models for textual zone segmentation and structural
analysis directly into the parsing process of 2D-SCFG. The contributions of
this paper with respect to [24] are the following. This paper researches the
probabilistic estimation of the grammatical models. We compare additional
approaches and we use a larger dataset that allowed us to carry out a more
comprehensive experimental research. Moreover, we provide a more detailed
description of the methodology used with 2D-SCFG.

In the following Section 2 we describe the problem of structure detection
and page segmentation applied to marriage license books. A review of PGMs
is given in Section 3. The 2D-SCFG model and the corresponding parsing
algorithm are defined in Section 4. Then we describe the features used for
classifying textual zones at local level in Section 5. Finally, Section 6 reports
and analyzes the experimentation carried out, and conclusions and future
work are provided in Section 7.
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2. Segmentation of Structured Documents

Marriage license books are handwritten documents that have been used
in ecclesiastical institutions for centuries for registering marriages. Most of
these books have a structure similar to an accounting book. Figure 1 shows
an example of page of a marriage license book belonging to a collection of 291
books conserved at the Cathedral of Barcelona. The pages in these books
were orderly written, and although there are differences over the centuries,
the layout in each page was quite rigid.

Every book is divided in two parts: the first part is an index of surnames
and the second part contains the marriage license records (see [10] for a
more detailed description of this collection). This paper is focused on the
segmentation of the pages in the second part of the book.

Each page contains several records, such that each one is associated with
a marriage license. Each record has in turn a husband surname’s block (Fig-
ure 2.a), the main block (Figure 2.b), and the tax block (Figure 2.c). Note
that the documents can have additional textual zones, like the date that can
be seen at the beginning of the page (it can also appear in the middle of a
page), and the two large calligraphic letters1 that separate the consecutive
records that were registered the same day. These additional zones were ig-
nored in this paper, i.e., they are considered like background because they
were not considered relevant for subsequent transcription tasks. The process
for creating the ground-truth requires marking the minimum rectangle con-
taining the identified classes: Body, Name and Tax. All the pixels that did
not belong to any of these regions were considered background.

The final goal in these documents is to obtain the transcription of each
marriage license. The transcription of a similar document was studied in [10]
by using Handwritten Text Recognition (HTR) techniques [8]. In that pa-
per, HTR experiments were carried out by using lines as the minimal unit
segmentation for training and recognition. Using lines for this purpose has
the drawback that there is no context for the language model at the begin-
ning of the line and most of the errors are usually concentrated in the initial
words of the line. Therefore, concatenating the lines of a record should be
very important to transcribe this type of documents at record level, as well
as other techniques like category-based language models [25].

1These letters are D. D. that is the abbreviation of “Dit dia” which means “The men-
tioned day”.
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Figure 1: Example of page of a marriage license book containing six records.
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Figure 2: Example of the page segmentation problem for two records. Several background
zones are considered and each record is composed of three parts: (a) Name (b) Body (c)
Tax.

In this way the correct segmentation of each page becomes a challenging
task. The problem is to correctly isolate every record in a page, and to
relate their corresponding parts, that is, the surname, the body text and the
tax associated with each entry. In this paper we focused on detecting the
bounding boxes around the main parts of each record. Note, that a fine-
grained detection of the frontiers of each zone would be ideal, but this is
difficult because sometimes two zones overlap if rectangular bounding boxes
are used as in this paper (see the lower record in Fig. 2).

The problem of detecting the records can be stated as two different prob-
lems: first, to classify the textual zones into the previously mentioned classes
(Background, Name, Body and Tax ); and second, to detect the complete set
of records of each page. To address this problem, first we review related work
based on PGMs to solve the segmentation of images of documents. These
graphical models become our baseline approach. Second, we present a model
based on 2D-SCFG that solves the segmentation of the full document us-
ing structural and stochastic information. Finally, we describe two sets of
text classification features used to classify the image regions according to the
graphical information, and the experimentation performed on this corpus.
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3. Probabilistic Graphical Models

When we tackle the problem of image labeling, Probabilistic Graphical
Models (PGMs) [14] provide a proper framework to represent the structure
and the relationships between the variables in the model.

In this representation the different variables are distributed in a graph
structure, where it can be depicted as a directed or undirected graph de-
pending on the type of dependencies represented. This graph is composed
by a set of nodes representing the different set of variables, and a set of edges
denoting the dependencies between the nodes.

In the case of image labeling, a natural way for representing the dependen-
cies between the pixels of the image is by means of a bidimensional grid-like
structure, which can be modeled by a Markov Random Field (MRF) [26]. In
this representation each pixel in the image is represented by a node in the
graph, although in some tasks it is also common that a node represents a
group of pixels clustered in cells or superpixels [18].

In this problem the objective is to compute Maximum a Posteriori (MAP)
probability to find the combination of class labels c for each pixel in x that
maximizes the PGM probability. One way to model this distribution is in
terms of the energy associated with a Conditional Random Field (CRF) [19],
conditioning the probability with respect to a set of computed features:

P (c | x) =
1

Z(x)
exp

∑
i

ψ(xi, ci) +
∑

(i,j)∈ε

φ(ci, cj)

 (1)

where ψ(xi, ci) represents the local potentials at each pixel i, and φ(ci, cj)
the pairwise potentials of assigning the labels ci, cj to the neighbor pixels
i, j. The constant Z(x) represents the partition function, a normalization
factor to ensure the proper definition of the probability distribution. In
some types of structures, as in the case of grid-like graphs, a large amount of
variables may result in the impossibility of providing an exact computation
of this value, leading to the need of using approximate methods to achieve
this task [27].

Many methods have been proposed to perform inference in PGMs, that is,
to obtain the likelihood or the conditional probability with a model for a given
input. However, the problem of computing exact inference in grid-structured
CRFs is known to be a NP-hard problem and becomes intractable when we
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model a large number of variables [28]. Nevertheless, there are many meth-
ods in the literature that provide approximate solutions to the problem. One
example is the Graph Cut algorithm [15] used in many segmentation tasks
[29]. The method relies on the fact that many computer vision problems can
be formulated in terms of an energy minimization function, and provides a
local minimum of the minimization function based on the most likely cut in
the graph. Another family of methods used to perform approximate infer-
ence in graphical models are the sum-product message passing algorithms.
Within this type we found the Belief Propagation (BP) algorithm [16], and
the version for loops Loopy Belief Propagation (LBP) [30], that is able to
perform inference in the case of grid-structured CRFs. There are also other
algorithms that follow different approaches. One example is the Iterated
Conditional Models (ICM) [31], an algorithm for optimization that follows a
search paradigm. In this paper we use the three algorithms stated before for
the inference in PGMs.

4. 2D Stochastic Context-Free Grammars

In this study we propose to use 2D-SCFG in order to compute the most
likely structure and segmentation of a document. This powerful model in-
tends to tackle the logical layout problem in combination with text classifica-
tion features. A context-free model is a natural way to account for both the
horizontal and vertical context of the problem, where there are dependencies
among rows, columns and 2D regions.

We formally define a 2D-SCFG as follows. A Context-Free Grammar
(CFG) G is a tuple (N,Σ, S, R), where N is a finite set of non-terminal
symbols, Σ is a finite set of terminal symbols (N ∩ Σ = ∅), S ∈ N is the
start symbol of the grammar, and R is a finite set of rules: A→ α, A ∈ N ,
α ∈ (N ∪ Σ)+.

A Stochastic Context-Free Grammar (SCFG) Gs is defined as a pair
(G,P ), where G is a CFG and P : R →]0, 1] is a probability function of
rule application, i.e. ∀A ∈ N :

∑nA
i=1 P (A→ αi) = 1; where nA is the num-

ber of rules associated with non-terminal symbol A. This type of grammars
can be represented in Chomsky Normal Form (CNF) resulting in only two
types of productions: binary rules A→ BC and terminal rules A→ c (where
A,B,C ∈ N and c ∈ Σ).

We define 2D-SCFG that are able to deal with bidimensional matrices as
a generalization of SCFG. In this extension, nonterminal symbols account for
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2D regions. The binary rules of a 2D-SCFG have an additional parameter
r ∈ {H,V} that describes a spatial relation: horizontal concatenation (H) or
vertical concatenation (V). Given a rule A

r−→ B C, the combined subprob-
lems B and C must be arranged according to the spatial relation constraint,
i.e., horizontally adjacent and same height for r = H and vertically adjacent
and same width for r = V. This simple extension is enough to account for
the problem we are dealing with. The segmentation of the input document
can be obtained as the most likely derivation given a 2D-SCFG, such that
the region that defines the input image is recursively divided either vertically
or horizontally into smaller rectangular regions.

4.1. Parsing Algorithm

Given a page image, the problem is to obtain the most likely parsing
according to a 2D-SCFG. For this purpose, the input page is considered as a
bidimensional matrix I with dimensions w × h and each cell of the matrix
can be either a pixel or a cell of d× d pixels. Then, we define an extension
of the well-known CYK algorithm to account for bidimensional structures.
We have basically extended the algorithm described in [22] to include the
stochastic information of our model.

The CYK algorithm for 2D-SCFG is essentially a dynamic programming
method, which fills in a parsing table T . Following a notation very similar
to [32], each element of T is a probabilistic nonterminal vector, where their
components are defined as:

T(x,y),(x+1,y+1)[A] = P̂ (A⇒ z(x,y),(x+1,y+1)) (2)

T(x,y),(x+i,y+j)[A] = P̂ (A
+⇒ z(x,y),(x+i,y+j)) (3)

Each region z(x,y),(x+i,y+j) is defined as a rectangle delimited by its top-
left corner (x, y) and its bottom-right corner (x + i, y + j). We denote
`i×j = `(z(x,y),(x+i,y+j)) as the size (i× j) of the subproblem associated with

a region z(x,y),(x+i,y+j). The probabilities P̂ represent the probability of the
most likely derivation from nonterminal A resulting in the region z.

If the size of the subproblem is larger than 1× 1, then there exists some
binary rule (A

r−→ B C, with B,C ∈ N , and r ∈ {H,V }) and some split
point k such that, in a similar way to [32], we can divide the problem in two
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subproblems:

P̂ (A
+⇒ z(x,y),(x+i,y+j)) = P (`i×j | A) max

B,C
{

max
1≤k<i

P (A
H−→ B C) P̂ (B

+⇒ z(x,y),(x+k,y+j)) P̂ (C
+⇒ z(x+k,y),(x+i,y+j)) ,

max
1≤k<j

P (A
V−→ B C) P̂ (B

+⇒ z(x,y),(x+i,y+k)) P̂ (C
+⇒ z(x,y+k),(x+i,y+j)) } (4)

where a new hypothesis is computed from two smaller subproblems, such
that the probability is maximized for every possible vertical and horizontal
decomposition resulting in the region z(x,y),(x+i,y+j). It should be noted that

the 2D-SCFG provides syntactic and spatial constraints P (A
r−→ B C), and

we have also included the probability P (`i×j | A) that a nonterminal A
accounts for a problem of size i× j.

The probability P (`i×j | A) has two effects on the parsing process. First,
it helps to model the spatial relations among every part of a given page
because there is a specific nonterminal for each zone of interest. For instance,
this can be seen in Figure 2 where the size of the background region on top
of the page will be different from the size of the background zone over a
tax region. Furthermore, many unlikely hypotheses are pruned during the
parsing process due to its size information, hence, it speeds up the algorithm.

Considering the definition of the matrix parsing table T (Eq. (3)), the
expression of the Eq. (4) can be rewritten to obtain the general term of the
parsing algorithm. Thus, for all i and j, 2 ≤ i ≤ w, 2 ≤ j ≤ h, we have:

T(x,y),(x+i,y+j)[A] = P (`i×j | A) max
B,C

{

max
1≤k<i

P (A
H−→ B C) T(x,y),(x+k,y+j)[B] T(x+k,y),(x+i,y+j)[C] ,

max
1≤k<j

P (A
V−→ B C) T(x,y)(x+i,y+k)[B] T(x,y+k),(x+i,y+j)[C] }

For subproblems of size equal to 1× 1 and taking into account the defini-
tion of Eq. (2), the derivation probability of a single cell (size region equal to
1× 1) can be marginalized according to the class label (terminal) c. Given
that we need to calculate the most likely parsing, we can approximate the
sum by a maximization, and considering some other usual assumptions the
probability of the derivation of a single cell is:

P̂ (A⇒ z(x,y),(x+1,y+1)) ≈ P (`1×1 | A) max
c

P (A→ c) P (c | z) (5)
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where P (`1×1 | A) is the probability that nonterminal A derives a subprob-
lem of size 1 × 1; P (c | z) represents the probability that a cell (region) z
belongs to class c, and it is described in Section 5; and P (A → c) is the
probability of a terminal rule for terminal (class) c.

Taking into account the matrix T (Eq. (2)), we can rewrite the expression
of Eq. (5) to obtain the initialization term of the parsing algorithm. Thus,
for each region z of size 1× 1, we have:

T(x,y),(x+1,y+1)[A] = P (`1×1 | A) max
c

P (A→ c) P (c | z(x,y),(x+1,y+1)) (6)

Finally, the most likely parsing of the full input page is obtained in
T(0,0),(w,h)[S] such that S is the start symbol of the 2D-SCFG. It is important
to notice that all the probability distributions involved in the parsing pro-
cess can be learnt from labeled data. The time complexity of the algorithm
is O(w3h3|R|) and the spatial complexity is O(w2h2).

4.2. Model Estimation

The model based on 2D-SCFG for parsing structured documents has,
in turn, some stochastic distributions that need to be learnt. First, the
probability P (c | z) that a certain region z of the image belongs to class c is
described in Section 5.

There are two additional distributions that we have to estimate: the
probabilityies P (`i×j | A) and the probability of the rules of the grammar
P (A→ α). In order to learn automatically these distributions, we performed
a forced recognition of the training set. Given a certain document, the forced
recognition was carried out by providing the probability P (c | z) using the
ground-truth information. Concretely, for each cell z belonging to class c∗

we set P (c∗ | z) = 1 and P (c | z) = 0, ∀c 6= c∗. The remaining distributions
were considered equiprobable.

Hence, we obtained for each document the best parsing according to the
2D-SCFG model. On one hand, the probability distribution of the size for
each nonterminal A was estimated according to the occurrences in the forced
recognition of the training set as

P (`i×j | A) =
n(Ai×j)

n(A)

such that n(Ai×j) is the number of times that nonterminal A accounts for a
region of size i× j in the training set, and n(A) the total number times that
nonterminal A accounted for a region of any size.
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On the other hand, the probabilities of the rules of the grammar were es-
timated using the set of derivation trees obtained from the forced recognition
of the training set as:

P (A→ c) =
n(A→ c)

n(A)

P (A
r−→ B C) =

n(A
r−→ B C)

n(A)

where each rule probability is computed using the number of times that the
rule was used in the training set, normalized by the total number of rules
with nonterminal A as left-hand symbol n(A).

In order to make the model able to account for unseen events, after these
distributions were estimated, we also smoothed them by setting a minimum
probability threshold.

5. Text Classification Features

In this section we describe the different features selected in this paper
for classifying small regions of pixels and how we incorporated them into
the 2D-SCFG described above. Following the outline in [17] we used two
different set of features, Gabor features as texture descriptors and Relative
Location Features [18].

5.1. Texture features

Gabor transform is a multi-resolution transform commonly used for tex-
ture analysis. A bank of filters is defined for several orientations and signal
frequencies. A fast implementation of this filter was proposed in [33] and it
implements a multi-resolution bank of filters in which the only parameters
to be given are: the number of orientations (n), the number of resolution
levels (m) and the highest frequency (fmax). As a result, it is obtained a
feature vector g of dimensions n×m, which covers almost all the spectrum
of frequencies up to the highest one fmax.

The Gabor filter is defined by a sinusoidal wave of complex values modu-
lated by an exponential function [34]. This exponential function is a Gaussian
function centered in the origin of coordinates, with a parameter controlling
the size of the function support2. In the frequency space, the Gabor filter is

2We refer as support of a Gaussian function the region enclosing 99% of the energy.
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also defined by a Gaussian function, centered in the frequency f0 and sup-
port inversely proportional to frequency f0. Furthermore, in images the filter
support has an elliptical shape tuned by three parameters γ, η and θ:

ψ(x, y; f, θ) =
f 2
0

πγη
e
−
(
f2

γ2
x′2+ f2

η2
y′2

)
ei2πfx

′

x′ = x cos θ + y sin θ,

y′ = −x sin θ + y cos θ

(7)

It is well-known that the Fourier transform of a Gaussian function is again
a Gaussian function. In addition, if we scale the support of Gabor filters by
a factor of k−m, the support of their Fourier transform are proportional to
km. In particular, given the definition of Gabor filters in Eq. (7), the support
of Gabor filters in the spatial domain are ellipses with axis proportional to
γ

fmax
km and η

fmax
km. The values of η and γ are obtained according to the

number of orientations n, the scaling factor k, and the overlapping degree q
of filters in the Fourier space as:

γ =
k − 1

k + 1

√
− log q

π
; η =

√
− log q

π tan π
2n

Once we obtained the set of features, we applied a Gaussian mixture
model (GMM) to estimate the probability P (g | c) of each possible class
c identified in this task: Background, Name, Body and Tax . Finally, we
defined the probability P (c | z) for a cell z for a particular class c required
in Eq. (6) in the case of the 2D-SCFG, and to define the term ψ in Eq. (1):

P (c | z) =
1

|z|
∑
g∈z

P (g | c)P (c)∑
c P (g | c)P (c)

(8)

5.2. Relative Location Features

Relative Location Features (RLF) were introduced in [18] as a way to en-
code inter-class and intra-class spatial relationships as local features. These
features are computed from relative location probability mapsMci|cj , encod-
ing the probability of the class ci at region i and knowing that at region j
the class cj is found. In other words, Mci|cj(ui,j) = P (ci | cj, i, j) where by
ui,j = (xi, yi) − (xj, yj) we denote the offset between regions i and j, such
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that (xi, yi) and (xj, yj) represent the centroid coordinates of regions i and
j, respectively. Thus, the self and other RLF are defined as:

votherci
(i) =

∑
i 6=j:ci 6=cj

Mci|cj(ui,j)P (cj | j)

vselfci
(i) =

∑
i 6=j:ci=cj

Mci|cj(ui,j)P (cj | j)

Moreover, herein cj = arg maxc P (c | j) is the class label assigned at
region j having the highest probability and P (c | i) is the a posteriori proba-
bility estimated of Eq. (8). Each of these features, vci(i) = (votherci

(i), vselfci
(i)),

model the probability of assigning the class label c to a region z taking into
account the information provided by the rest of image regions about their
position and its initial label predictions. Finally, once we have computed the
set of RLF, we are able to compute the probability required in Eq. (6):

P (c | z) = wapp logP (c | z) + wotherc log votherc (z)+wselfc log vselfc (z) (9)

where votherc and vselfc are the different sets of RLF and wapp, wotherc and
wselfc are the corresponding weights learnt from a logistic regression model.
Further details about the process can be seen in [17].

6. Experiments

This section describes the experimentation carried out to evaluate the
proposed 2D-SCFG model for the task of page segmentation. We compare
the results obtained with approaches based on PGMs using three different
families of inference methods.

First, we describe the used dataset and the general settings of the exper-
iments performed. Then we describe the general outline from both exper-
iments. Finally, we report several performance metrics and the discussion
comparing the different models.

6.1. Experimental Settings

The Five Centuries of Marriages (5CofM) dataset is composed of a set
of 291 handwritten books including marriage records conducted in the pe-
riod from the year 1451 until 1905. The set of books includes approximately
550, 000 marriage licences from 250 parishes [10]. Despite the great number
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of volumes in this dataset, currently only a few of them are being used on
different tasks like handwriting recognition, word spotting, or layout anal-
ysis. For each of these tasks the corresponding ground-truth was manually
obtained by selecting and labeling the different regions on each page, which is
a time consuming process. Therefore, due to time limitations we focused on
a particular book of the collection for the experiments reported in this paper.
However, as the documents in all the volumes have the same structure, the
proposed model could be applied to the remaining books.

This paper is focused on the segmentation of volume 208 of this collection
(Figures 1 and 2 show examples). This volume has 593 pages of which we
labeled at pixel level the first 200 pages of the volume. We randomly split
150 pages for training, 10 pages as validation set and the remaining 40 for
test. The resolution of the images is 300 dpi (≈ 2750× 3940 pixels).

Following previous works [17, 24] each page of the dataset was divided in
cells of 50×50 pixels in order to reduce the computational cost of processing
an image at pixel level. In previous studies we tested several configurations
of cell sizes and the impact on the results. The experiments using cells of size
25×25 pixels produced lower precision and recall values for all the considered
classes in this task. Smaller cell sizes produce that text classification features
do not have enough information in order to correctly discriminate among the
different classes. Also, cells over 50 × 50 pixels were not tested since the
regions for some of the classes could be smaller than the cell size and they
might not be detected.

With respect to the parameters of the texture filter bank, we computed
a 36-dimensional feature vector using 9 orientations and 4 frequencies of the
filter. These values were chosen to ensure that the Gabor functions cover
the frequency space. Additionally, we set the overlapping degree q = 0.5,
fmax = 0.35, and the scaling factor k =

√
2. Finally, we also learnt the

parameters of the logistic regression used in Eq. (9) from the training set.

6.2. PGMs Experiments

We performed several experiments using the CRF model defined in Eq. (1)
to compute the best label configuration for a page. We used the two sets
of features described in the previous section to define the local potentials on
each cell of the image as described in Eq. (8) and (9). To compute the values
for the pairwise potentials we learnt the frequencies for each possible pair of
classes from the training set.
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We conducted several experiments using different inference algorithms
for the CRF. First, we tested the α-β-swap version of the Graph Cut al-
gorithm proposed in [15]. Second, we use the method based in message
passing LBP [30]. Finally we used the ICM algorithm based in the search
paradigm [31].

6.3. 2D-SCFG Experiments

We used a 2D-SCFG to tackle the page segmentation problem on the
5CofM dataset. Given the nature of the problem such that the documents
have a known structure, we manually defined the grammar. According to
the model described in Section 4, we had to train several probability distri-
butions. The probabilities of the productions of the grammar and the size
probabilities for each nonterminal were estimated from the training data as
explained in Section 4.2.

The 2D-SCFG model combines probability distributions that were learnt
independently, hence, there may be scaling problems when multiplying the
different probabilities. For this reason, the resulting probability was obtained
such that each distribution had an exponential weight that adjusted the scale
of them. As a result, we had to tune three weights: the probabilities of the
grammar P (A→ c) or P (A

r−→ B C), the probability of a region P (c | z) and
the probabilities P (`i×j | A). Then, the weights of the system were tuned
using the downhill simplex algorithm by maximizing the average F-measure
for classes Name, Body and Tax when recognizing the validation set.

6.4. Results and Discussion

We classified the document images of the test set by using the model
learnt from the training set and the best parameters of the validation ex-
perimentation. We tested in these experiments the performance of three
inference algorithms for PGMs (Section 3): Graph Cut, Loopy Belief Prop-
agation (LBP) and Iterated Conditional Models (ICM); and a grammati-
cal model (Section 4): 2D Stochastic Context-Free Grammars (2D-SCFG).
These models were evaluated in combination with two sets of features which
were described in Section 5: Gabor features and Relative Location Features
(RLF). Table 1 shows the results for each class: Body, Name and Tax. The
reported metrics are the precision, recall and F-measure at cell level aver-
aged for each page in the test set. Results show that class Body was classified
with good F-measure rates, whereas classes Name and Tax represented the
most challenging part. This is related with the percentage of the page that
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Table 1: Classification results for different models and text classification features.

Model Features Class Precision Recall F-measure

Graph Cut

Gabor
Body 0.91 0.79 0.84
Name 0.21 0.80 0.32
Tax 0.50 0.84 0.61

RLF
Body 0.90 0.92 0.91
Name 0.66 0.78 0.70
Tax 0.89 0.43 0.56

LBP

Gabor
Body 0.89 0.83 0.86
Name 0.27 0.74 0.39
Tax 0.45 0.79 0.56

RLF
Body 0.88 0.93 0.90
Name 0.72 0.71 0.69
Tax 0.85 0.43 0.55

ICM

Gabor
Body 0.89 0.83 0.85
Name 0.27 0.74 0.39
Tax 0.45 0.79 0.56

RLF
Body 0.89 0.92 0.91
Name 0.71 0.74 0.72
Tax 0.90 0.45 0.58

2D-SCFG

Gabor
Body 0.91 0.95 0.93
Name 0.73 0.86 0.78
Tax 0.69 0.80 0.71

RLF
Body 0.90 0.95 0.92
Name 0.77 0.79 0.77
Tax 0.78 0.65 0.68
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represents each region, because it is more difficult to properly classify small
regions. Errors are usually made in the boundaries of the regions, hence, a
row or column of cells represents a smaller percentage of class Body than
class Name, and of course than class Tax which is usually composed of just
a few cells.

There are two factors to take into account: the text classification features
and the page segmentation model. Regarding text classification features, we
can clearly observe two different behaviours. On one hand, PGMs performed
significantly better with RLF features than when regular Gabor features were
used. Both Body and Name recognition classes always improved, where the
improvement in Name F-measure is remarkable. The class Tax was the most
challenging class. Although the differences in F-measure were small, we can
see that Gabor features provided less precision but more recall whereas RLF
produced higher precision and lower recall values.

On the other hand, the 2D-SCFG model obtained similar performance us-
ing both sets of features, and even results with Gabor features were slightly
better than results provided by RLF features. 2D-SCFG is a powerful model
that is able to take advantage of the knowledge about the document struc-
ture. Thus, grammars were able to overcome the lacks of Gabor features
obtaining very good results for all classes without the additional spatial in-
formation provided by RLF. Given that we learnt stochastic information
about the structure of the documents from training data, the model was able
to successfully parse using the regular Gabor features. Figure 3 shows an
example of recognition using 2D-SCFG and both sets of features. We can
see how the overlapping region between Name and Body is classified as Body.
Also, as results pointed out (see Table 1), Gabor features obtained higher
recall and we can see that resulting regions are larger. On the other hand,
RLF provided higher precision by adjusting better the size of the regions
detected. Finally, recognizing the space between records is difficult due to
the large calligraphic letters considered as background.

Comparing the performance of the different models, 2D-SCFG signifi-
cantly outperformed PGMs. Results showed that grammars achieved a great
improvement even using Gabor features. The best results among the PGMs
were obtained by ICM and RLF features with F-measure 0.91, 0.72 and 0.58
for classes Body, Name and Tax, respectively. The 2D-SCFG model with Ga-
bor features achieved F-measure 0.93, 0.78 and 0.71 for classes Body, Name
and Tax, respectively.

PGMs classify cells but they do not identify the explicit segmentation
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a) Ground-truth

b) 2D-SCFG with Gabor

c) 2D-SCFG with RLF

Figure 3: Example of page segmentation and structure detection with 2D-SCFG using
cells of 50× 50 pixels and different text classification features.
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in records. However, the most likely hypothesis according to the 2D-SCFG
model provides a derivation tree that accounts for both the structure of the
document and the segmentation in cells. Using this information we extracted
the number of records detected in each document. Then, we computed the
percentage of documents in the test set where the number of records detected
was correct.

2D-SCFG in combination with Gabor features computed the right number
of records in 80% of the test documents, whereas with RLF features only
52.5% of the documents had the correct number of records detected. All the
errors were due to oversegmentation in both sets of features. This measure
helps to assess the quality of the recognition such that we can see that in
addition to the slight improvement of Gabor features with respect to RLF
features, the number of records detected presented an important difference.

7. Conclusions and future work

In this paper we have proposed a model based on 2D-SCFG for page
segmentation of structured documents using two sets of features: Gabor and
RLF. We also tested several inference algorithms for PGMs, where RLF
features obtained better results than Gabor features. The experimentation
carried out proved that 2D-SCFG significantly outperformed PGMs in this
task. Furthermore, 2D-SCFG obtained better results with Gabor features
than using RLF features. Moreover, grammars were able to provide the
detailed and explicit information of the page segmentation, hence, record-
level evaluation could be done and results also showed a good performance
of the model.

Future work will be focused in testing other text classification features
that could improve the segmentation results. Also, it would be very interest-
ing to test the proposed model in other tasks involving structured informa-
tion.
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[23] F. Álvaro, J. Sánchez, J. Bened́ı, Recognition of on-line handwritten
mathematical expressions using 2d stochastic context-free grammars and
hidden markov models, Pattern Recognition Letters 35 (2014) 58 – 67.
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