|
Records |
Links |
|
Author |
Asma Bensalah; Jialuo Chen; Alicia Fornes; Cristina Carmona_Duarte; Josep Llados; Miguel A. Ferrer |
|
|
Title |
Towards Stroke Patients' Upper-limb Automatic Motor Assessment Using Smartwatches. |
Type |
Conference Article |
|
Year |
2020 |
Publication |
International Workshop on Artificial Intelligence for Healthcare Applications |
Abbreviated Journal |
|
|
|
Volume |
12661 |
Issue |
|
Pages |
476-489 |
|
|
Keywords |
|
|
|
Abstract |
Assessing the physical condition in rehabilitation scenarios is a challenging problem, since it involves Human Activity Recognition (HAR) and kinematic analysis methods. In addition, the difficulties increase in unconstrained rehabilitation scenarios, which are much closer to the real use cases. In particular, our aim is to design an upper-limb assessment pipeline for stroke patients using smartwatches. We focus on the HAR task, as it is the first part of the assessing pipeline. Our main target is to automatically detect and recognize four key movements inspired by the Fugl-Meyer assessment scale, which are performed in both constrained and unconstrained scenarios. In addition to the application protocol and dataset, we propose two detection and classification baseline methods. We believe that the proposed framework, dataset and baseline results will serve to foster this research field. |
|
|
Address |
Virtual; January 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPRW |
|
|
Notes |
DAG; 600.121; 600.140; |
Approved |
no |
|
|
Call Number |
Admin @ si @ BCF2020 |
Serial |
3508 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Riba; Anjan Dutta; Josep Llados; Alicia Fornes; Sounak Dey |
|
|
Title |
Improving Information Retrieval in Multiwriter Scenario by Exploiting the Similarity Graph of Document Terms |
Type |
Conference Article |
|
Year |
2017 |
Publication |
14th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
475-480 |
|
|
Keywords |
document terms; information retrieval; affinity graph; graph of document terms; multiwriter; graph diffusion |
|
|
Abstract |
Information Retrieval (IR) is the activity of obtaining information resources relevant to a questioned information. It usually retrieves a set of objects ranked according to the relevancy to the needed fact. In document analysis, information retrieval receives a lot of attention in terms of symbol and word spotting. However, through decades the community mostly focused either on printed or on single writer scenario, where the
state-of-the-art results have achieved reasonable performance on the available datasets. Nevertheless, the existing algorithms do not perform accordingly on multiwriter scenario. A graph representing relations between a set of objects is a structure where each node delineates an individual element and the similarity between them is represented as a weight on the connecting edge. In this paper, we explore different analytics of graphs constructed from words or graphical symbols, such as diffusion, shortest path, etc. to improve the performance of information retrieval methods in multiwriter scenario |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.097; 601.302; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RDL2017a |
Serial |
3053 |
|
Permanent link to this record |
|
|
|
|
Author |
Josep Llados; Felipe Lumbreras; V. Chapaprieta; J. Queralt |
|
|
Title |
ICAR: Identity Card Automatic Reader. |
Type |
Miscellaneous |
|
Year |
2001 |
Publication |
Sixth International Conference on Document Analysis and Recognition |
Abbreviated Journal |
ICDAR 2001 |
|
|
Volume |
|
Issue |
|
Pages |
470–474 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
USA |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS;DAG |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ LLC2001 |
Serial |
112 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Gomez; Dimosthenis Karatzas |
|
|
Title |
Multi-script Text Extraction from Natural Scenes |
Type |
Conference Article |
|
Year |
2013 |
Publication |
12th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
467-471 |
|
|
Keywords |
|
|
|
Abstract |
Scene text extraction methodologies are usually based in classification of individual regions or patches, using a priori knowledge for a given script or language. Human perception of text, on the other hand, is based on perceptual organisation through which text emerges as a perceptually significant group of atomic objects. Therefore humans are able to detect text even in languages and scripts never seen before. In this paper, we argue that the text extraction problem could be posed as the detection of meaningful groups of regions. We present a method built around a perceptual organisation framework that exploits collaboration of proximity and similarity laws to create text-group hypotheses. Experiments demonstrate that our algorithm is competitive with state of the art approaches on a standard dataset covering text in variable orientations and two languages. |
|
|
Address |
Washington; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.056; 601.158; 601.197 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GoK2013 |
Serial |
2310 |
|
Permanent link to this record |
|
|
|
|
Author |
Lei Kang; Juan Ignacio Toledo; Pau Riba; Mauricio Villegas; Alicia Fornes; Marçal Rusiñol |
|
|
Title |
Convolve, Attend and Spell: An Attention-based Sequence-to-Sequence Model for Handwritten Word Recognition |
Type |
Conference Article |
|
Year |
2018 |
Publication |
40th German Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
459-472 |
|
|
Keywords |
|
|
|
Abstract |
This paper proposes Convolve, Attend and Spell, an attention based sequence-to-sequence model for handwritten word recognition. The proposed architecture has three main parts: an encoder, consisting of a CNN and a bi-directional GRU, an attention mechanism devoted to focus on the pertinent features and a decoder formed by a one-directional GRU, able to spell the corresponding word, character by character. Compared with the recent state-of-the-art, our model achieves competitive results on the IAM dataset without needing any pre-processing step, predefined lexicon nor language model. Code and additional results are available in https://github.com/omni-us/research-seq2seq-HTR. |
|
|
Address |
Stuttgart; Germany; October 2018 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GCPR |
|
|
Notes |
DAG; 600.097; 603.057; 302.065; 601.302; 600.084; 600.121; 600.129 |
Approved |
no |
|
|
Call Number |
Admin @ si @ KTR2018 |
Serial |
3167 |
|
Permanent link to this record |
|
|
|
|
Author |
Josep Llados; Gemma Sanchez |
|
|
Title |
Graph Matching vs. Graph Parsing in Graphics Recognition: A Combined Approach |
Type |
Journal |
|
Year |
2004 |
Publication |
International Journal of Pattern Recognition and Artificial Intelligence |
Abbreviated Journal |
IJPRAI |
|
|
Volume |
18 |
Issue |
3 |
Pages |
455–473 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; IF: 0.588 |
Approved |
no |
|
|
Call Number |
DAG @ dag @ LlS2004 |
Serial |
445 |
|
Permanent link to this record |
|
|
|
|
Author |
Ernest Valveny; Enric Marti |
|
|
Title |
Learning of structural descriptions of graphic symbols using deformable template matching |
Type |
Conference Article |
|
Year |
2001 |
Publication |
Proc. Sixth Int Document Analysis and Recognition Conf |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
455-459 |
|
|
Keywords |
|
|
|
Abstract |
Accurate symbol recognition in graphic documents needs an accurate representation of the symbols to be recognized. If structural approaches are used for recognition, symbols have to be described in terms of their shape, using structural relationships among extracted features. Unlike statistical pattern recognition, in structural methods, symbols are usually manually defined from expertise knowledge, and not automatically infered from sample images. In this work we explain one approach to learn from examples a representative structural description of a symbol, thus providing better information about shape variability. The description of a symbol is based on a probabilistic model. It consists of a set of lines described by the mean and the variance of line parameters, respectively providing information about the model of the symbol, and its shape variability. The representation of each image in the sample set as a set of lines is achieved using deformable template matching. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG;IAM; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ VMA2001 |
Serial |
1654 |
|
Permanent link to this record |
|
|
|
|
Author |
Jon Almazan; David Fernandez; Alicia Fornes; Josep Llados; Ernest Valveny |
|
|
Title |
A Coarse-to-Fine Approach for Handwritten Word Spotting in Large Scale Historical Documents Collection |
Type |
Conference Article |
|
Year |
2012 |
Publication |
13th International Conference on Frontiers in Handwriting Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
453-458 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we propose an approach for word spotting in handwritten document images. We state the problem from a focused retrieval perspective, i.e. locating instances of a query word in a large scale dataset of digitized manuscripts. We combine two approaches, namely one based on word segmentation and another one segmentation-free. The first approach uses a hashing strategy to coarsely prune word images that are unlikely to be instances of the query word. This process is fast but has a low precision due to the errors introduced in the segmentation step. The regions containing candidate words are sent to the second process based on a state of the art technique from the visual object detection field. This discriminative model represents the appearance of the query word and computes a similarity score. In this way we propose a coarse-to-fine approach achieving a compromise between efficiency and accuracy. The validation of the model is shown using a collection of old handwritten manuscripts. We appreciate a substantial improvement in terms of precision regarding the previous proposed method with a low computational cost increase. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-1-4673-2262-1 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICFHR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ AFF2012 |
Serial |
1983 |
|
Permanent link to this record |
|
|
|
|
Author |
Joan Mas; Gemma Sanchez; Josep Llados; B. Lamiroy |
|
|
Title |
An Incremental On-line Parsing Algorithm for Recognizing Sketching Diagrams |
Type |
Conference Article |
|
Year |
2007 |
Publication |
9th IEEE International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
1 |
Issue |
|
Pages |
452–456 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Curitiba (Brazil) |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ MSL2007a |
Serial |
847 |
|
Permanent link to this record |
|
|
|
|
Author |
Alicia Fornes; Beata Megyesi; Joan Mas |
|
|
Title |
Transcription of Encoded Manuscripts with Image Processing Techniques |
Type |
Conference Article |
|
Year |
2017 |
Publication |
Digital Humanities Conference |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
441-443 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DH |
|
|
Notes |
DAG; 600.097; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ FMM2017 |
Serial |
3061 |
|
Permanent link to this record |