toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Lei Kang; Juan Ignacio Toledo; Pau Riba; Mauricio Villegas; Alicia Fornes; Marçal Rusiñol edit   pdf
url  openurl
  Title Convolve, Attend and Spell: An Attention-based Sequence-to-Sequence Model for Handwritten Word Recognition Type Conference Article
  Year 2018 Publication 40th German Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 459-472  
  Keywords  
  Abstract This paper proposes Convolve, Attend and Spell, an attention based sequence-to-sequence model for handwritten word recognition. The proposed architecture has three main parts: an encoder, consisting of a CNN and a bi-directional GRU, an attention mechanism devoted to focus on the pertinent features and a decoder formed by a one-directional GRU, able to spell the corresponding word, character by character. Compared with the recent state-of-the-art, our model achieves competitive results on the IAM dataset without needing any pre-processing step, predefined lexicon nor language model. Code and additional results are available in https://github.com/omni-us/research-seq2seq-HTR.  
  Address Stuttgart; Germany; October 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GCPR  
  Notes DAG; 600.097; 603.057; 302.065; 601.302; 600.084; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ KTR2018 Serial 3167  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: