toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author (up) Arnau Baro; Pau Riba; Jorge Calvo-Zaragoza; Alicia Fornes edit   pdf
doi  openurl
  Title Optical Music Recognition by Recurrent Neural Networks Type Conference Article
  Year 2017 Publication 14th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages 25-26  
  Keywords Optical Music Recognition; Recurrent Neural Network; Long Short-Term Memory  
  Abstract Optical Music Recognition is the task of transcribing a music score into a machine readable format. Many music scores are written in a single staff, and therefore, they could be treated as a sequence. Therefore, this work explores the use of Long Short-Term Memory (LSTM) Recurrent Neural Networks for reading the music score sequentially, where the LSTM helps in keeping the context. For training, we have used a synthetic dataset of more than 40000 images, labeled at primitive level  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.097; 601.302; 600.121 Approved no  
  Call Number Admin @ si @ BRC2017 Serial 3056  
Permanent link to this record
 

 
Author (up) Arnau Baro; Pau Riba; Jorge Calvo-Zaragoza; Alicia Fornes edit   pdf
doi  isbn
openurl 
  Title Optical Music Recognition by Long Short-Term Memory Networks Type Book Chapter
  Year 2018 Publication Graphics Recognition. Current Trends and Evolutions Abbreviated Journal  
  Volume 11009 Issue Pages 81-95  
  Keywords Optical Music Recognition; Recurrent Neural Network; Long ShortTerm Memory  
  Abstract Optical Music Recognition refers to the task of transcribing the image of a music score into a machine-readable format. Many music scores are written in a single staff, and therefore, they could be treated as a sequence. Therefore, this work explores the use of Long Short-Term Memory (LSTM) Recurrent Neural Networks for reading the music score sequentially, where the LSTM helps in keeping the context. For training, we have used a synthetic dataset of more than 40000 images, labeled at primitive level. The experimental results are promising, showing the benefits of our approach.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor A. Fornes, B. Lamiroy  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-030-02283-9 Medium  
  Area Expedition Conference GREC  
  Notes DAG; 600.097; 601.302; 601.330; 600.121 Approved no  
  Call Number Admin @ si @ BRC2018 Serial 3227  
Permanent link to this record
 

 
Author (up) Arnau Baro; Pau Riba; Jorge Calvo-Zaragoza; Alicia Fornes edit  url
openurl 
  Title From Optical Music Recognition to Handwritten Music Recognition: a Baseline Type Journal Article
  Year 2019 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 123 Issue Pages 1-8  
  Keywords  
  Abstract Optical Music Recognition (OMR) is the branch of document image analysis that aims to convert images of musical scores into a computer-readable format. Despite decades of research, the recognition of handwritten music scores, concretely the Western notation, is still an open problem, and the few existing works only focus on a specific stage of OMR. In this work, we propose a full Handwritten Music Recognition (HMR) system based on Convolutional Recurrent Neural Networks, data augmentation and transfer learning, that can serve as a baseline for the research community.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 601.302; 601.330; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ BRC2019 Serial 3275  
Permanent link to this record
 

 
Author (up) Asma Bensalah; Alicia Fornes; Cristina Carmona_Duarte; Josep Llados edit   pdf
doi  openurl
  Title Easing Automatic Neurorehabilitation via Classification and Smoothness Analysis Type Conference Article
  Year 2022 Publication Intertwining Graphonomics with Human Movements. 20th International Conference of the International Graphonomics Society, IGS 2022 Abbreviated Journal  
  Volume 13424 Issue Pages 336-348  
  Keywords Neurorehabilitation; Upper-lim; Movement classification; Movement smoothness; Deep learning; Jerk  
  Abstract Assessing the quality of movements for post-stroke patients during the rehabilitation phase is vital given that there is no standard stroke rehabilitation plan for all the patients. In fact, it depends basically on the patient’s functional independence and its progress along the rehabilitation sessions. To tackle this challenge and make neurorehabilitation more agile, we propose an automatic assessment pipeline that starts by recognising patients’ movements by means of a shallow deep learning architecture, then measuring the movement quality using jerk measure and related measures. A particularity of this work is that the dataset used is clinically relevant, since it represents movements inspired from Fugl-Meyer a well common upper-limb clinical stroke assessment scale for stroke patients. We show that it is possible to detect the contrast between healthy and patients movements in terms of smoothness, besides achieving conclusions about the patients’ progress during the rehabilitation sessions that correspond to the clinicians’ findings about each case.  
  Address June 7-9, 2022, Las Palmas de Gran Canaria, Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IGS  
  Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no  
  Call Number Admin @ si @ BFC2022 Serial 3738  
Permanent link to this record
 

 
Author (up) Asma Bensalah; Antonio Parziale; Giuseppe De Gregorio; Angelo Marcelli; Alicia Fornes; Josep Llados edit  url
doi  openurl
  Title I Can’t Believe It’s Not Better: In-air Movement for Alzheimer Handwriting Synthetic Generation Type Conference Article
  Year 2023 Publication 21st International Graphonomics Conference Abbreviated Journal  
  Volume Issue Pages 136–148  
  Keywords  
  Abstract During recent years, there here has been a boom in terms of deep learning use for handwriting analysis and recognition. One main application for handwriting analysis is early detection and diagnosis in the health field. Unfortunately, most real case problems still suffer a scarcity of data, which makes difficult the use of deep learning-based models. To alleviate this problem, some works resort to synthetic data generation. Lately, more works are directed towards guided data synthetic generation, a generation that uses the domain and data knowledge to generate realistic data that can be useful to train deep learning models. In this work, we combine the domain knowledge about the Alzheimer’s disease for handwriting and use it for a more guided data generation. Concretely, we have explored the use of in-air movements for synthetic data generation.  
  Address Evora; Portugal; October 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IGS  
  Notes DAG Approved no  
  Call Number Admin @ si @ BPG2023 Serial 3838  
Permanent link to this record
 

 
Author (up) Asma Bensalah; Jialuo Chen; Alicia Fornes; Cristina Carmona_Duarte; Josep Llados; Miguel A. Ferrer edit   pdf
url  openurl
  Title Towards Stroke Patients' Upper-limb Automatic Motor Assessment Using Smartwatches. Type Conference Article
  Year 2020 Publication International Workshop on Artificial Intelligence for Healthcare Applications Abbreviated Journal  
  Volume 12661 Issue Pages 476-489  
  Keywords  
  Abstract Assessing the physical condition in rehabilitation scenarios is a challenging problem, since it involves Human Activity Recognition (HAR) and kinematic analysis methods. In addition, the difficulties increase in unconstrained rehabilitation scenarios, which are much closer to the real use cases. In particular, our aim is to design an upper-limb assessment pipeline for stroke patients using smartwatches. We focus on the HAR task, as it is the first part of the assessing pipeline. Our main target is to automatically detect and recognize four key movements inspired by the Fugl-Meyer assessment scale, which are performed in both constrained and unconstrained scenarios. In addition to the application protocol and dataset, we propose two detection and classification baseline methods. We believe that the proposed framework, dataset and baseline results will serve to foster this research field.  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPRW  
  Notes DAG; 600.121; 600.140; Approved no  
  Call Number Admin @ si @ BCF2020 Serial 3508  
Permanent link to this record
 

 
Author (up) Asma Bensalah; Pau Riba; Alicia Fornes; Josep Llados edit   pdf
openurl 
  Title Shoot less and Sketch more: An Efficient Sketch Classification via Joining Graph Neural Networks and Few-shot Learning Type Conference Article
  Year 2019 Publication 13th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages 80-85  
  Keywords Sketch classification; Convolutional Neural Network; Graph Neural Network; Few-shot learning  
  Abstract With the emergence of the touchpad devices and drawing tablets, a new era of sketching started afresh. However, the recognition of sketches is still a tough task due to the variability of the drawing styles. Moreover, in some application scenarios there is few labelled data available for training,
which imposes a limitation for deep learning architectures. In addition, in many cases there is a need to generate models able to adapt to new classes. In order to cope with these limitations, we propose a method based on few-shot learning and graph neural networks for classifying sketches aiming for an efficient neural model. We test our approach with several databases of
sketches, showing promising results.
 
  Address Sydney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG; 600.140; 601.302; 600.121 Approved no  
  Call Number Admin @ si @ BRF2019 Serial 3354  
Permanent link to this record
 

 
Author (up) Ayan Banerjee; Palaiahnakote Shivakumara; Parikshit Acharya; Umapada Pal; Josep Llados edit  url
doi  openurl
  Title TWD: A New Deep E2E Model for Text Watermark Detection in Video Images Type Conference Article
  Year 2022 Publication 26th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords Deep learning; U-Net; FCENet; Scene text detection; Video text detection; Watermark text detection  
  Abstract Text watermark detection in video images is challenging because text watermark characteristics are different from caption and scene texts in the video images. Developing a successful model for detecting text watermark, caption, and scene texts is an open challenge. This study aims at developing a new Deep End-to-End model for Text Watermark Detection (TWD), caption and scene text in video images. To standardize non-uniform contrast, quality, and resolution, we explore the U-Net3+ model for enhancing poor quality text without affecting high-quality text. Similarly, to address the challenges of arbitrary orientation, text shapes and complex background, we explore Stacked Hourglass Encoded Fourier Contour Embedding Network (SFCENet) by feeding the output of the U-Net3+ model as input. Furthermore, the proposed work integrates enhancement and detection models as an end-to-end model for detecting multi-type text in video images. To validate the proposed model, we create our own dataset (named TW-866), which provides video images containing text watermark, caption (subtitles), as well as scene text. The proposed model is also evaluated on standard natural scene text detection datasets, namely, ICDAR 2019 MLT, CTW1500, Total-Text, and DAST1500. The results show that the proposed method outperforms the existing methods. This is the first work on text watermark detection in video images to the best of our knowledge  
  Address Montreal; Quebec; Canada; August 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; Approved no  
  Call Number Admin @ si @ BSA2022 Serial 3788  
Permanent link to this record
 

 
Author (up) Ayan Banerjee; Sanket Biswas; Josep Llados; Umapada Pal edit  url
openurl 
  Title SwinDocSegmenter: An End-to-End Unified Domain Adaptive Transformer for Document Instance Segmentation Type Conference Article
  Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 14187 Issue Pages 307–325  
  Keywords  
  Abstract Instance-level segmentation of documents consists in assigning a class-aware and instance-aware label to each pixel of the image. It is a key step in document parsing for their understanding. In this paper, we present a unified transformer encoder-decoder architecture for en-to-end instance segmentation of complex layouts in document images. The method adapts a contrastive training with a mixed query selection for anchor initialization in the decoder. Later on, it performs a dot product between the obtained query embeddings and the pixel embedding map (coming from the encoder) for semantic reasoning. Extensive experimentation on competitive benchmarks like PubLayNet, PRIMA, Historical Japanese (HJ), and TableBank demonstrate that our model with SwinL backbone achieves better segmentation performance than the existing state-of-the-art approaches with the average precision of 93.72, 54.39, 84.65 and 98.04 respectively under one billion parameters. The code is made publicly available at: github.com/ayanban011/SwinDocSegmenter .  
  Address San Jose; CA; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ BBL2023 Serial 3893  
Permanent link to this record
 

 
Author (up) Ayan Banerjee; Sanket Biswas; Josep Llados; Umapada Pal edit  url
doi  openurl
  Title SemiDocSeg: Harnessing Semi-Supervised Learning for Document Layout Analysis Type Journal Article
  Year 2024 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume Issue Pages  
  Keywords Document layout analysis; Semi-supervised learning; Co-Occurrence matrix; Instance segmentation; Swin transformer  
  Abstract Document Layout Analysis (DLA) is the process of automatically identifying and categorizing the structural components (e.g. Text, Figure, Table, etc.) within a document to extract meaningful content and establish the page's layout structure. It is a crucial stage in document parsing, contributing to their comprehension. However, traditional DLA approaches often demand a significant volume of labeled training data, and the labor-intensive task of generating high-quality annotated training data poses a substantial challenge. In order to address this challenge, we proposed a semi-supervised setting that aims to perform learning on limited annotated categories by eliminating exhaustive and expensive mask annotations. The proposed setting is expected to be generalizable to novel categories as it learns the underlying positional information through a support set and class information through Co-Occurrence that can be generalized from annotated categories to novel categories. Here, we first extract features from the input image and support set with a shared multi-scale feature acquisition backbone. Then, the extracted feature representation is fed to the transformer encoder as a query. Later on, we utilize a semantic embedding network before the decoder to capture the underlying semantic relationships and similarities between different instances, enabling the model to make accurate predictions or classifications with only a limited amount of labeled data. Extensive experimentation on competitive benchmarks like PRIMA, DocLayNet, and Historical Japanese (HJ) demonstrate that this generalized setup obtains significant performance compared to the conventional supervised approach.  
  Address June 2024  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ BBL2024a Serial 4001  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: