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Abstract—With the emergence of the touchpad devices and
drawing tablets, a new era of sketching started afresh. However,
the recognition of sketches is still a tough task due to the
variability of the drawing styles. Moreover, in some application
scenarios there is few labelled data available for training,
which imposes a limitation for deep learning architectures. In
addition, in many cases there is a need to generate models able
to adapt to new classes. In order to cope with these limitations,
we propose a method based on few-shot learning and graph
neural networks for classifying sketches aiming for an efficient
neural model. We test our approach with several databases of
sketches, showing promising results.

Keywords-Sketch classification; Convolutional Neural Net-
work; Graph Neural Network; Few-shot learning;

I. INTRODUCTION

One of the first illustrations of human critical thinking was
sketching. Sketching allows humans to graphically commu-
nicate ideas with a high degree of conceptualization and
personalization. With the pervasive use of the touchscreen
devices and drawing tablets, a new era of sketching started
afresh. Sketches involve a communication language taking
into account static (shape) and dynamic (motion, pressure)
features. Sketch understanding has been therefore one of
the most important areas of Graphics Recognition. The
automatic understanding of sketched drawings involves the
recognition of the composing symbols and their relation-
ships. Depending on the context, this recognition consists
of parsing the sketches in terms of the basic composition
symbols and the rules that define a diagrammatic language.
There is a large range of applications involving sketch
recognition: technical design (sketching diagrams), ideation
tools (mind mapping), cross-modal search (sketch-based
image retrieval), different mobile apps involving doodling
experiences (graphical passwords), etc.

The automatic recognition of sketched symbols is a tough
task. First of all, due to their conceptual nature that make
users to draw ideas at different levels of abstraction. There
may be a high intra-class variability, ranging from amateur
sketches to photo-realistic ones. This is also due to a
semantic association between the class concept and the
sketch that a user draws. For example, the concept cat can be

drawn with different poses, levels of sophistication, fidelity
to the realistic shape... This semantic gap is especially
noticeable in cross-domain applications, like sketch-based
image retrieval, where the similarity between sketches and
images can not be solved exclusively in terms of visual
shape features. A second difficulty is the scarcity of available
labeled data. In supervised machine learning approaches
that require training data, sketches have to be drawn one
by one by human being. Some doodling platforms like
Google Quick, Draw! [7] have allowed to compile a database
of amateur sketches carefully sourced from internet users.
The database, consisting of 3,000 sketches per category
(corresponding to real objects) is available for training and
testing sketch classifiers. However, in some domains the
amount of labeled data is barely available, e.g. in technical
domains like engineering diagrams, architectural drawings,
flowcharts, etc. The difficulty in obtaining annotated data
is also evident in those applications that require adaptation
to the users style. In this case, the annotated data must be
provided by the same user, or at least start from generic
databases and perform a fine-grained adaptation.

When few labeled samples are given, an adequate strategy
is the Few-shot Learning (FSL). The FSL paradigm in
particular the one-shot is inspired from the fact that when
humans have to deal with unprecedented experiences, the
link between cause and effect is quickly learnt in order
to survive. This way of learning is not similar to the
incremental learning, where knowledge is gained gradually
through trial and error [18]. Alternatively stated, FSL is
a learning approach in which the classifier must adapt to
acclimate to unseen classes in training, with the constraint
that there are only very few annotated examples of these
classes [18]. This technique has been successfully applied
to object classification [15], [14].

In the FSL training scenario, which is a particular real-
ization of transductive learning, instead of providing to the
system a large set of samples and their associated images,
it is fed by a collection of images and their associated
label similarity. Thus, training and test data is provided
beforehand, but instead of inferring a predictive model from
the training data, the system leverages the unlabeled data



and the relations between labeled and unlabeled data to
predict the labels of the test (unlabeled) data. The main
drawback of the few-shot learning is that, since a model
is not inferred, every time a new set of instances must
be classified, the whole training must be re-done again. In
the context of sketches, suppose the system receives a set
of sketched symbols. Some of these samples are labeled
with their corresponding class, but some of them are not.
The aimed output is to associate the corresponding labels
to the unlabeled sketches. The prediction is based on the
observation of the similarities between labeled and unlabeled
data.

In this work, we propose a few shot learning approach
for sketch recognition. Based on the architecture proposed
by Garcia and Bruna [16] we propose an architecture based
on graph representations. Graph nodes are associated with
the sketches, and edges represent similarity relations. Using
a supervised message-passing formalism [6] the model is
trained in an end-to-end manner using graph neural net-
works. The model propagates the node information, casting
a posterior inference over the graph determined by the input
sketches and labels. We contribute with several improve-
ments regarding the baseline method. First, we incorporate
edge classification in our model. Second, we remove the
hot-encoding representation. We also explore the creation
of master nodes (i.e. prototypes) to speed up the system
in large datasets. Master nodes can be seen as joint node
embeddings that contract the information of a subgraph in
a kind of hyperedge. In addition, from the application point
of view, we adapt the approach to the particular problem of
sketched symbol recognition.

The rest of the paper is organized as follows. Section
II reviews related works in the deep learning literature.
Section III describes the baseline model, whereas Section
IV exhibits the intended architecture improvements. Section
V describes the exploited datasets, the metrics and discusses
the results. Finally, Section VI draws the conclusions and
suggests future research lines.

II. RELATED WORK

In this section, we provide information about the most
germane works in the deep learning literature to our work.

In the leading work for Few Shot Learning [13], a
Bayesian one-shot algorithm was put forward in the behalf of
recognition purposes. Conversely to intuition, it was proven
that interesting features of a novel object category could be
learned from one (or few) training example.

Let’s consider a large dataset of labeled instances, with a
number of classes denoted Ctrain, the key objective of an
FSL approach, is to build classifiers on the testing set with a
disjoint of new classes Ctest, albeit the fact that only a small
labeled support set will be available [8]. When the model is
given a support set including K examples from N classes,

then it is solicited to classify some query examples into the
N classes, this is a K shots-N ways learning scenario [20].

Many advances have been made in Few-shot learning in
order to improve the already existent models. One of them
is Matching Networks [19], where attention mechanism
are applied over the embedding space of the support set
according to the test sample. With this definition, the output
for a new class is characterized by a linear combination of
the labels in the support set. Every single episode is destined
to imitate a few-shot task.

In addition, Prototypical Network [18] are founded on the
concept that points cluster around one prototype representa-
tion. It involves computing a prototype ck for each present
class in the support set Sk. The prototype is taken to be the
mean of the learned embedded elements φ(xi) of the class:

ck =
1

|Sk|
∑

(xi,xj)∈Sk

fφ

(
xi

)
, (1)

where fφ is the embedding function.
Later, the classification is accomplished by finding the

nearest class prototype for an embedded query point. The
approach has proven to be simpler and more efficient then
prior meta-learning approaches.

In [16], a framework that addresses the few-shot paradigm
by means of Graph Convolutional Networks (GNN) is
presented. The proposed architecture extrapolates a number
of prior few-shot architectures namely the Siamese Net-
works [11], the Matching Networks [18] and the Prototypical
Networks [18]. Over and above, by dint of the graph
formulation it is conceivable to have different training setups
within the same framework. As a result, one learner can
adapt to different learning schemes such as semi-supervised
learning and active learning paradigms.

Initially, Graph Neural Networks (GNN) were proposed
in [1]. The proprieties of the convolutions were used in
the Fourier domain. The authors demonstrated that learning
convolutional layers with a certain number of parameters
is unrelated to the size of the inputs, when it regards low-
dimensional graphs.

Later, in [10], for the sake of overcoming the high cost of
computing an eigen-decomposition, Chebyshev polynomial
was applied to approximate the linear graph convolution
acting on a certain node and generate the localized filters in
an effective manner. Hence, all the methods described above
are solely able to be trained on a single graph and cannot be
instantly used to a set of graphs with dissimilar structures,
by virtue of their dependence Laplacian eigenbasis which is
associated to a fixed graph structure [17].

III. BASELINE

In this section we describe the few shot learning architec-
ture that will be used as the baseline of our model.



A. Baseline Architecture

Garcia and Bruna introduced in [16] a classification
method based on an end-to-end graph neural network ar-
chitecture inferred from beforehand models. The aim of this
few shot learning model was to propagate label information
from labeled instances to the unlabeled query, all of them
belonging to a set of images denoted T .

The input T is associated to a graph GT = (V, E). In this
graph, the nodes of the graph are initialized by an embedding
of the original images xi ∈ T . Afterwards, the learned image
embedding is concatenated with a label encoding:

x
(0)
i = (ϕ(xi), h(li)), (2)

where ϕ is a Convolutional neural network and h(li) ∈
RK+ is the one-hot encoding of the label if the label is known,
and a uniform probability distribution otherwise.

Finally, they make use of a GNN convolutions to obtain
a final node classification. A GNN convolution layer Gc is
defined as:

xk+1
l = Gc(xk) = ρ

(∑
B∈A

Bx(k)θ
(k)
B,l

)
, l = d1.....dk+1,

(3)
where Θ =

{
θ1k, ...., θ

|A|
k

}
k
, θBk ∈ Rdk×dk+1 , are trainable

parameters and ρ (.) is a point-wise non-linearity. Moreover,
A is a set of local graph linear operators which in its simple
form can be composed of the adjacency operator or powers
of the adjacency matrix.

The priorly mentioned operators are learnt by means of
extracting edge features. Hence, the edge learning process
is performed as fellows:

Ã
(k)
i,j = ϕθ̃

(
x
(k)
i , x

(k)
j

)
(4)

where ϕ is a symmetric learnable function. In their work, it
is defined as:

ϕ(x
(k)
i , x

(k)
j ) = MLPθ̃(abs(x

(k)
i − x

(k)
j )) (5)

where MLP stands for a Multi Layer Perceptron. Finally, the
family of operations is defined A = {Ã(k), 1}. The training
adjacency is normalized to a stochastic kernel by applying
a softmax along each row.

B. Limitations

Although this architecture has many advantages, it has the
following limitations:
Node Classification: The one-hot encoding will arbitrary
change according to a given support set, hence, it will
become hard to set it as a prediction goal. In other words,
the prediction depends on the labelling of the support set and
it can easily differ from one support set to another while the
query is still the same.
One-hot Encoding: This encoding does not bring out the
similarities between the classes. This point jointly with the

node classification will fix the number of classes that we
may use in our support set.
Scalability: The size of the GNN would easily explode in
certain applications. In the current setting, an increase on
the number of classes and ways will lead to generate large
graphs that will be difficult to use. Hence, we could seek
the optimization of the GNN in order to address Few-shot
problems at a larger scale when specially the number of
classes may increase a lot.

Next, we describe our proposed architecture, with the aim
to palliate with the above pointed challenges.

IV. METHOD

As stated before, in this section we describe our proposal,
which aims to alleviate the limitations of the baseline model,
and also, to adapt it to the task of sketch classification. An
overview of the architecture is shown in Figure 1.

Basically, our improvements are the following: the incor-
poration of the edge classification, the removal of the one-hot
encoding, and finally, the exploration of the use of master
nodes. These improvements are described next.

Figure 1. Model architecture.

A. Edge classification

Many modern works apropos of graph convolutional neu-
ral networks explore the use of the information associated
in the edges of the graph. In [17] attention weights and
node features are learned simultaneously. For every bond
attribute, the binary adjacency matrix is switched to a real-
valued attention matrix. In an other work [2] the framework
consists of an encoder and a decoder. The encoder takes an
incomplete graph as an input, and it generates an embedding
for all the nodes. Thereupon, the decoder predicts the
missing edges using the node embedding.



To address the limitation concerning node classification
described before, we aim to avail of the information available
in the edges, because the stochastic normalized adjacency
matrix has nice properties that can make the use of the edges
beneficial.

Thus, in our approach, the model is requested to predict
the respective weights for a query image. The labels are
1×K×N vector (with 1 whenever the query and the node
belong to the same class). As a consequence, the number
of model’s learnable parameters is less than the one in [2],
owing to the deletion of last convolutional network, which
is not reckoning with edge classification. Contrary to the
baseline method, we are not applying a softmax along each
row of the adjacency matrix.

B. Hot-encoding removal

In the baseline model, a one-hot encoding is concatenated
to the ensuing embedding of the CNN, at the time of
constructing the initial node features of the graph. In this
section, we want to asses the need of using the one-hot en-
coding in our model. For this reason, we omit concatenating
the one-hot encoding to the embeddings before feeding them
to the GCN.

The employed one-hot-encoding does not provide any
varying similarity between the classes. Furthermore, the
manner the classes are arbitrarily elected prior to each train-
ing experiment implies that the exact same class can have
distinct one-hot-encoding labeling at every single training
experiment. To cope with this limitation, we opt to remove
the hot-encoding when forming the initial graph’s node,
assuming that we are always using the Edge classification
outlined in IV-A. Ergo, equation 2 becomes:

x
(0)
i =

(
φ(xi)

)
(6)

Thereby, the size of the embedding of the image is less
compared to the one in the baseline architecture.

C. Master Node

Exploring large datasets with this model is feasible.
However, enlarging the number of ways or shots in an
FSL regime will lead to an exponential increase in terms
of the nodes’ number and graph’s size that may not fit
in the memory. Many techniques were introduced in the
field of graph reduction to find a substitute for a large
graph that preserves the basic properties of the original
graph and is less complex with regards to the number of
edges/nodes, including clustering and segmentation exempli
gratia [12] [3].

To cope with the scalability limitation of the model, we
designate a representative for each class of the support set.
Premised on the concept of Prototypical Networks [18] and
the desire to optimize the size of the graph when the number
of ways and shots is big. So, rather than forming the Graph

from all the embeddings of all the images in the support
set, the graph is created from the prototypes of the classes
solely. We consider the prototype of a class to be the mean
as in equation 1.

As a result of using a reduced graph instead of the whole
graph as in the baseline architecture, the size of the GNN’s

input decreases drastically by
1

shots
, in few shot scenarios.

D. Training

Our proposed approach is trained in a supervised manner,
so we know whether or not a pair of images belong to the
same class. All the models were trained using the Adam [9]
optimizer with weight decay i.e. L2 regularization and an
initial learning rate of 0.01.

The use of edge classification in our model implies
attempting to solve a multi-binary classification problem.
This means that the question is ”Does the query belong to
the same class as the image in the support set?” instead of
”To which class does the query belong?” like in [16]. We
consider the label of each example as being a binary vector
l1......lN×K , where lj = 1 if the query and the image of
the support class in nodej in the graph belong to the same
class.

We consider a binary cross-entropy loss between the
learned adjacency matrix and the label vector.

V. EXPERIMENTAL RESULTS

In order to assess our architecture, we use an evaluation
approach akin to the one in [16].We conduct different q-shot,
K-way experiments. Concretely, we evaluate our architecture
on a sketch classification scenario, using the TU-Berlin and
the Mini-QuickDraw sketch datasets. Next, we describe the
datasets, the metrics, and analyze the results.

A. Datasets

TUBerlin: The TU-Berlin dataset [5] is formed by 20,000
unique hand-drawn sketches equally partitioned into 250
object categories. At first introduced within a quest to assess
the human recognition [5], it includes the most common
objects we could stumble upon in everyday life. The objects
are designed to be recognizable devoid of the context and are
sufficiently specific to have very few visual representations.
In the experiments, we use 161 seen classes for training,
41 for validation and 48 unseen classes for testing. Some
examples are shown in Figure 2.
Mini-QuickDraw: We introduce Mini-QuickDraw, a subset
of the Quick, Draw! dataset1 [4]. We have selected a subset
because we have removed very simple classes such as zigzag
and line, and also because the original dataset is too large
and not necessary to test the performance of a FSL method.

The Quick, Draw! dataset contains 50 million drawings
(doodles), denoted by a metadata. Our Mini-QuickDraw is

1https://github.com/googlecreativelab/quickdraw-dataset



Table I
TEST ACCURACIES (SHOWN IN PERCENTAGES) FOR 5WAYS SCENARIO: 1-SHOT AND 5-SHOT ON TU-BERLIN AND MINI-QUICKDRAW DATASETS. WE

ALSO PROVIDE THE TRAINING TIME OF EACH MODEL (MINUTES AND SECONDS).

TU-Berlin Mini-QuickDraw

Model 1-shot 5-shot 1-shot 5-shot

accuracy time accuracy time accuracy time accuracy time

Baseline [16] 73.10% 673m58.122s 90.42% 709m12.185s 59.47% 446m47.035s 86.30% 860m3.924s
Edge classification 77.44% 362m18.529s 90.72% 799m45.579s 58.72% 501m8.989s 76.32% 799m49.934s

Hot-encoding removal 73.79% 1110m30.559s 87.34% 818m42.496s 59.16% 495m44.017s 73.67% 823m7.613s
Master node - - 48.08% 780m17.290s - - 41.14% 796m43.326s

Figure 2. Examples from the TU-Berlin dataset.

composed of 32,700 drawings uniformly distributed in 109
object categories. We consider 70 seen classes for training,
18 classes for validation and 21 classes for testing. Some
examples are shown in Figure 3.

Figure 3. Examples from the Mini-QuickDraw dataset.

B. Metrics

In order to evaluate the performance of our approach,
we have compared the different models with the baseline
architecture [16]. The comparison is carried out in fair
setting. To measure the effectiveness of our model, we report
the mean accuracy on the test set over several experiments.

We also provide the training time, the number of trainable
parameters and the GNN input size (in Kilobits) for each one
of the proposed models.

C. Results

For all our experiments we have used an embedding
network of four convolutional layers followed by a fully
connected one. We train and test our model using similar
values for the number of ways N and the same number of
shots S. In other words, the number of ways and shots used
in training is the same as the ones used in testing (e.g. 5Way-
5shot for train and test).

Table I shows the accuracy and training times on both
datasets, whereas Table II shows the number of parameters
and the input size for the different versions of the model.

Table II
NUMBER OF PARAMETERS (5WAY 1 SHOT) AND INPUT SIZE (5WAY

5SHOT) FOR EACH MODEL.

Model N.parameters (5W-1s) Input size (5W-5s)
Baseline [16] 335994 345.8K

Edge classification 333699 345.8K
Hot-encoding removal 333699 332.8K

Master node 333699 79.8K

Concerning the Edge classification version, we perceive
a moderate increase in terms of accuracy in the TU-Berlin
experiments. Moreover, in the 5-Way 1-shot there is a signif-
icant decrease in the training time (instead of 673 minutes,
it trains in 362 minutes). In Table II we can observe a slight
reduction by 0.6% (5Way-1shot) in the number of trainable
parameters due to the deletion of the last convolutional layer.

Regarding the hot-encoding removal version, we discern
a small change in the accuracy, positive in the case of TU-
Berlin by 0,72% and in a form of a slight drop in the Mini-
Quickdraw case (from 59.47% to 59.16%) in the 5-Way 1-
shot. Along, with a rational slip in the input size by 3,32%
(5Way-5shots). Additionally, Table I projects an increase in
the training time compared to the baseline model.

Finally, anent the master node version, we observe that the
performance significantly drops. This behaviour is expected
because, instead of using all the instances in a class of the
support class, the few-shot task is conducted with only one
prototype for representing the class. On the flip side, the
input size experiences a free-fall of 76% (5Way-5shots). At
the same time, the training time goes down in the case of
Mini-QuickDraw.

In summary, we have observed that the edge classification
version is reliable since it either outperforms the state of
the art as in TU-Berlin or experiences a tiny slip as in
Mini-Quickdraw, in terms of accuracy. Also, it occupies less
memory space, due to the decline in trainable parameters’
number. Admittedly, hot-encoding does not play a major role
when relying on edge classification, because, compared to
the state of the art, we obtained a very similar accuracy but



with a slight increase in the training time.
Finally, the master node approach seems to be adequate

for large ways and shots values in an FSL scenario, since it
significantly reduces the size of the input, but at the cost of
a significant performance decrease.

VI. CONCLUSION

In this paper we have proposed a sketch classification
method based on graph neural networks. The problem has
been framed as a few-shot learning task where a small
support set of sketches is fed to the model. We conducted
a series of experiments on two datasets: TU-Berlin and
the Mini-Quickdraw. We have shown that the different
improvements over the baseline can provide an increase in
the performance or a significant decrease in training times
and model size.

As a future work, we would like to explore the incor-
poration of spatial attention mechanisms to the architecture
in order to enhance the query features, as well as changing
the network embedding architecture and enlarging the graph
neural network.
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