toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Ayan Banerjee; Palaiahnakote Shivakumara; Parikshit Acharya; Umapada Pal; Josep Llados edit  url
doi  openurl
  Title TWD: A New Deep E2E Model for Text Watermark Detection in Video Images Type Conference Article
  Year 2022 Publication 26th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords Deep learning; U-Net; FCENet; Scene text detection; Video text detection; Watermark text detection  
  Abstract Text watermark detection in video images is challenging because text watermark characteristics are different from caption and scene texts in the video images. Developing a successful model for detecting text watermark, caption, and scene texts is an open challenge. This study aims at developing a new Deep End-to-End model for Text Watermark Detection (TWD), caption and scene text in video images. To standardize non-uniform contrast, quality, and resolution, we explore the U-Net3+ model for enhancing poor quality text without affecting high-quality text. Similarly, to address the challenges of arbitrary orientation, text shapes and complex background, we explore Stacked Hourglass Encoded Fourier Contour Embedding Network (SFCENet) by feeding the output of the U-Net3+ model as input. Furthermore, the proposed work integrates enhancement and detection models as an end-to-end model for detecting multi-type text in video images. To validate the proposed model, we create our own dataset (named TW-866), which provides video images containing text watermark, caption (subtitles), as well as scene text. The proposed model is also evaluated on standard natural scene text detection datasets, namely, ICDAR 2019 MLT, CTW1500, Total-Text, and DAST1500. The results show that the proposed method outperforms the existing methods. This is the first work on text watermark detection in video images to the best of our knowledge  
  Address Montreal; Quebec; Canada; August 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; Approved no  
  Call Number Admin @ si @ BSA2022 Serial 3788  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: