
Easing Automatic Neurorehabilitation via
Classification and Smoothness Analysis

Asma Bensalah1[0000−0002−2405−9811], Alicia Fornés1[0000−0002−9692−5336],
Cristina Carmona-Duarte2[0000−0002−4441−6652], and Josep

Lladós1[0000−0002−4533−4739]

1 Computer Vision Center, Computer Science Department,
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Abstract. Assessing the quality of movements for post-stroke patients
during the rehabilitation phase is vital given that there is no standard
stroke rehabilitation plan for all the patients. In fact, it depends basi-
cally on the patient’s functional independence and its progress along the
rehabilitation sessions. To tackle this challenge and make neurorehabil-
itation more agile, we propose an automatic assessment pipeline that
starts by recognising patients’ movements by means of a shallow deep
learning architecture, then measuring the movement quality using jerk
measure and related measures. A particularity of this work is that the
dataset used is clinically relevant, since it represents movements inspired
from Fugl-Meyer a well common upper-limb clinical stroke assessment
scale for stroke patients. We show that it is possible to detect the con-
trast between healthy and patients movements in terms of smoothness,
besides achieving conclusions about the patients’ progress during the
rehabilitation sessions that correspond to the clinicians’ findings about
each case.

Keywords: neurorehabilitation · upper-limb · movement classification
· movement smoothness · deep learning · jerk.

1 Introduction

Neurological disorders result in cognitive and motor impairments. The stroke
survivors in particular may face deficits in motor functions in one side of the
body. These function deficits are addressed through rehabilitation sessions to
partially or fully recover the functional independence of the patient [1]. One of the
central challenges, during this phase, is the assessment of the patient’s evolution.
Essentially, notable progress in post-stroke patient cases happens during the first
weeks namely the critical windows of heightened neuroplasticity [2]. After that,
the non-linear recovery function reaches asymptotic levels. For all above reasons,
both timing and treatment intensity in that critical period of time should be
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optimised. Thus it is indispensable to monitor patient’s progress continuously
and accurately, in order to maximise the patient’s recovery by the end of the
critical window. For long years, the way to proceed has been to use specific
clinical scales [3]. In practice, the patients’ motor functions are evaluated once
or twice in ten days. Ergo, the drawback of such an approach is that the patient’s
evolution is not assessed whenever patient is out of the rehabilitation room. In
fact, its the patient’s daily activities performance that best reflect his functional
independence.

One way to cope with this limitation is to automatize the assessment in or-
der to help clinicians to asses efficiently the patient. Many issues arise when
automatizing: firstly, determining the movement nature throughout a continu-
ous recording for hours; secondly, finding out which measures describe best the
movement quality.

To address the previous mentioned issues, we propose a framework to auto-
matically assess patients’ movements. The framework has two parts:

– The first part consists of movements’ classification via a shallow deep learn-
ing architecture into four key movements classes;

– The second part is an assessment module based on the jerk measure to ascer-
tain the contrast between patients and healthy individuals’ signals, as well
as estimating the patients’ evolution along the different sessions. Contrary
to other existing kinematic algorithms that need more memory space and
computational resources due to the number of kinematic parameters [4], jerk
is easier to implement in an embedded device.

Along the rest of this paper, we give an overview of related works in Sec 2,
then we describe our classification deep learning architecture in Sec 3. In Sec 4,
we give an overview of movement smoothness measurements. Next, we describe
our setup in Sec 5. Then, we present our results and findings in Sec 6.

2 Related work

Spotting a sequence in a signal aims to retrieve the signal or parts of it that are
relevant for a given query. Depending on the nature of the query, many sequence
spotting tasks arise [5] [6] [7]. If the signal is a series of one or many different
modalities and the query is an action, activity, motion or gesture, then we’re
addressing a Human Activity Recognition (HAR) task.

HAR has benefited greatly from the deep learning boom. HAR has been per-
formed using different modalities: RGB images [8], skeleton [9], acceleration [10],
wifi [11]...

Acceleration is a broadly exploited modality for action recognition due to
the fact that it is an non-invasive sensing method thus there are no privacy
constraint issues. HAR through acceleration is possible because often humans
perform a movement in the same qualitative way [12]. HAR is either performed
using traditional learning algorithms, for instance, support vector machines [13],
k-nearest neighbors [14] or employing deep learning models such as Convolutional
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Neural Networks (CNN) [15], Recurrent Neural Networks(RNNs) [16] or Long
short-term memory (LSTM) [17]. According to [18], 22% of the HAR works were
dedicated to health applications.

On the other hand, to assess recognized movements particularly for stroke
patients there is no general agreement on how to obtain a movement smooth-
ness indicator or what measure describes it best [19]. One reason for that is
the vague understanding of the neurophysiology behind movements’ quality, as
it is the case for upper limb movements [20]. According to [21], works about
smoothness measures for stroke patients fall mainly in five different categories:
trajectory related metrics [22], velocity related metrics [23] [24], acceleration
related metrics [25] [26], jerk related metrics [27] and other metrics [28]. As
explained above, HAR tasks have been tackled in many ways, as well as the
assessment movement quality question. In our work, and given the few available
data, we opt for a shallow deep learning architecture for HAR; moreover, we
explore the use of jerk measure for assessing patients quality movements.

3 Movement Classification

We got inspired from Supratak’s model [29] that was designed to tackle the
Polysomnography challenges, which is one of the ways to assess sleep quality [30].
Traditionally, Polysomnography is performed by a group of experts that annotate
recorded data, using a sleep stage scoring.

To alleviate the previous limitations the architecture implements a data aug-
mentation module and less signal processing steps in the pipeline.

3.1 Architecture

The model is fed with epochs of our raw acceleration signal (see Figure 1). We
classify the movements into one of the four key movement classes: M1, M2, M3,
M4. The first component of the model is composed of four CNN layers with the

Fig. 1: Raw acceleration signal of a healthy individual.
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aim of extracting time-invariant features from the raw signal. A max-pool and
a dropout layers are introduced after the first CNN layer and the last one, as
exemplified in Figure 2. The second component is designed to learn temporal

Fig. 2: Model architecture.

dependencies of the the raw signal (sequence learning). This is done via one
LSTM layer followed by a dropout layout, and together they form a unidirec-
tional RNN. The unidirectional RNN is supposed to learn time transition rules.
The unidirectionality of the LSTM results in eliminating the forward pass, hence,
reducing the number of hyperparameters and the computational resources.

Since our dataset is balanced, the weighted cross-entropy loss is set to 1 for
all classes. Furthermore, to address the scarce data issue, a data augmentation
is performed on the original data, every training epoch. Data augmentation is
carried out by shifting the signal through the time axis, the shifting span is
from a certain range of the epoch duration. The model is pretrained with the
Sleep-EDF dataset [31].

4 Movement smoothness

Following the description of the classification architecture, we present the move-
ments’ smoothness measurements next. Quantifying a movement quality can be
performed in many ways. Measuring the position relative to time, is one of them.
Velocity −→v (equation 1), acceleration −→a (equation 2), jerk

−→
j (equation 3) and

snap −→s (equation 4) are respectively the first, second, third and fourth derivative
of the trajectory −→x with respect to time, are the most widespread used mea-
suring quantities [32]. Those are the same measures used by the human body to
manage its balance. More specifically, this is handled by the sensorial functions of
the vestibular system that provides information such as body position together
with gravity direction [33]. If an object is in motion, it experiences velocity.
When velocity is not constant, the object is said to have an acceleration which is
not equal to zero. If acceleration is varying over time, then emerges a sensation
of jerkiness of the movement. Since attention was brought back to jerk in [34],
it has had many applications in the science and technology fields [35] [36] [37].
Jerk should always take into account when vibrations occur, also whenever an
abrupt transition happens [35]. For example, jerk is considered when designing
railways to ensure a smooth motion whenever train changes from a straight line
to a curved one, equally when ensuring that an industrial tool fails too soon
because of fast acceleration changes.
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When analysing a human movement by looking at its acceleration, it is axis
orientation dependent. A small rotation of the wrist while recording data can
result in a lot of noise in an axis acceleration. Hence, in this work, we focus
on jerk as a movement quality measure, in particular, as a smoothness indi-
cator. Ultimately, jerk is easier to implement in a an embedded device, unlike
other existing kinematic algorithms that need more space due to the number of
kinematic parameters.

−→v (t) =
d−→x (t)

dt
(1)

−→a (t) =
d−→v (t)

dt
(2)

−→
j (t) =

d−→a (t)

dt
(3)

−→s (t) =
d
−→
j (t)

dt
(4)

5 Setup

5.1 Dataset

The dataset used was recorded as a part of 3D kinematics for remote patient
monitoring (RPM3D) project3, aiming to build an automatic pipeline for stroke
patients. A dataset for stroke patients and healthy subjects along with a classifi-
cation baseline was published [38]. Patients and healthy individuals were given a
smartwatch in each hand. Healthy individuals were recorded once while patients
were recorded during four different sessions. The time interval between patients’
sessions is between one or two weeks. Initially, to assess a stroke patient upper
limb motor functions, an assessment is performed once in a week or ten days.
The best-known scale to asses sensorimotor impairments within stroke patients
is the Fugl-Meyer Assessment [39]. For this reason, authors were inspired from
the Fugl-Meyer movements to design their set of key movements Mi, i ∈ [1, 4],
thusly:

– Movement M1: shoulder extension/flexion.
– Movement M2: shoulder abduction.
– Movement M3: external/internal shoulder rotation.
– Movement M4: elbow flexion/extension

Scenarios The experiments were held into two different setups: a constrained
scenario L1 and unconstrained one L2. These are described as follows:

– Scenario L1: it represents a constrained scenario, where individuals perform
four key movements Mi: once with the dominant hand, second using the
non-dominant one and lastly with both hands.

3 http://dag.cvc.uab.es/patientmonitoring/

http://dag.cvc.uab.es/patientmonitoring/
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– Scenario L2: it represents the unconstrained scenario, composed of a sequence
of key movements Mi along with a set of other non-target movements Rj ,
j ∈ [1, 19]. Ri movements are a list of usual daily activities such as: drinking,
setting on a chair,... The movements are carried out in a random order.

5.2 Pipeline

We start by classifying movements into the four main classes: M1, M2, M3,
M4 (shoulder extension/flexion, shoulder abduction, external/internal shoulder
rotation, elbow flexion/extension).Then we compute the jerk value for a signal
that represents performing one movement, for several times, such as shown in
Figure 3 to inspect the global acceleration patterns of a movement.

Fig. 3: Acceleration and jerk for a repetition of movements - Healthy
individual.

After that, we compute the jerk for a smaller fragment of the previous signal
(one well segmented movement), for a more accurate smoothness estimation.

6 Results

Results below are related to the classification of L1 movements and their smooth-
ness analysis.

6.1 Classification

For the experiments, the data is divided into 80% for training, and 20% for
testing. The testing accuracy reaches an average of 77,01%. We experience a
decrease of accuracy in some epochs, which we believe is due to the small size
of the training data set.
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6.2 Smoothness

In Table 1 we give information about the jerk values for well segmented move-
ments of healthy and patient individuals, along axis x. Theoretically, the jerk
value should be lower in the case of healthy individuals compared to patients,
because their ability to move and perform the movements in a smoother way is
superior, thus their movements are less jerky (see Figure 4) [21].

Fig. 4: Jerk values for a patient and healthy individual performing the
same movement.

As observed in Table 1, this is the case for M2, M3, M4. For instance, re-
garding movement M3, the absolute value of the jerk mean for patients is 0.7
times the absolute value of the jerk mean for healthy subjects. Simultaneously,
the trend in Table 1 is that the maximum of jerk within the healthy population
is greater than the patients’ one, for all four movements M1,M2,M3, and M4.
The jerk represents the change in acceleration. In that sense, to gain more un-

Table 1: Jerk measures for patients and healthy individuals, along axis
x.

Jerk Measure

Mean Max Min

axis x Healthy Patient Healthy Patient Healthy Patient

M1 0,00500712 -0,006998 497,99 145,54 -1,96E+02 -138,99182

M2 -0,0004051 -0,001621 157,56 69,46 -186,062127 -152,652

M3 -0,0023341 0,0016529 102,74 84,58 -1,27E+02 -62,973556

M4 0,00031141 0,0006176 161,04 107,14 -1,50E+02 -114,20477
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derstanding of the movements’ smoothness, we went for jerk related measures,
which are calculated based on the absolute value of the jerk. In this work, we
focus on the squared jerk measure. Table 2 shows the mean, maximum and min-
imum values of the squared jerk measure. Notice that the trend in Table 1 is
that the mean jerk within healthy individuals is lower, which corresponds to the
theory premises’ that the jerkier and less smooth the movement is, the higher
is the jerk value. Hence, patients should have higher jerk values. Nonetheless,
this is not the case for the squared mean jerk. The general pattern in Table 2
is that the healthy population’s squared jerk mean is higher than patients. We
think that this could be related to the fact that a patient signal is noisier than
healthy individual one because patients are slower, thus a patient’s signal has
more peaks and more cumulative noise (see Figure 5).

Fig. 5: Healthy vs patient signal.

Table 2: Squared jerk measures for patients and healthy individuals,
along axis x.

Suquared Jerk Measure

Mean Max Min

axis x Healthy Patient Healthy Patient Healthy Patient

M1 19,96 7,65 247993,61 21182,96 8,93E-12 2,22E-12

M2 18,11 5,76 34619,12 23302,63 0 8,42E-10

M3 14,40 3,75 16056,08 7153,85 3,55E-11 0

M4 26,19 4,48 25934,96 13042,73 8,93E-12 0

Tables 3, 4, 5, 6 provide information about the squared jerk measure for four
patients, namely: 100, 101, 102, 103. It indicates the evolution of four patients
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through four sessions, along axis x. Table 3 gives information about the squared
jerk measures: mean, maximum and minimum for patient 100. Patient’s per-
formance for movement M1 is better in sessions 3 and 4. Figure 6 shows a less
jerky M1 in session 3 compared to the first session. At the same time patient 100
reaches the most significant improvement for M3 and M4 in the third session.
Yet, movement M2 squared jerk mean values present no improvement during the
four sessions.

Fig. 6: Squared jerk values for movement M1 in session 1 and 3- Pa-
tient 100.

Table 3: Squared jerk measures for patient 100 across four sessions,
along axis x.

Patient 100

Mean Max Min

axis x Session 1 Session2 Session3 Session4 Session 1 Session2 Session3 Session4 Session 1 Session2 Session3 Session4

M1 12,88 13,04 5,09 10,16 18882,36 12129,74 4166,80 21182,96 8,38E-09 1,67E-08 1,75E-07 2,30E-09

M2 4,17 9,07 12,74 19,92 715,66 1246,53 23302,63 7364,52 9,35E-08 4,49E-08 8,42E-10 1,88E-08

M3 9,16 6,25 4,65 8,28 3738,07 2385,56 976,07 7153,85 8,53E-10 2,05E-10 5,18E-09 3,94E-08

M4 6,28 30,45 4,80 7,14 1804,63 13042,73 1246,78 670,45 1,98E-08 1,28E-08 1,20E-08 0

As for Patient 101 (see Table 4), the mean squared jerk values have increased
during the four rehabilitation sessions, as illustrated in Figure 7. The Figure
shows a less smooth M4 movement in the last session, except for movement M1,
which experiences a decrease in the mean squared jerk value compared to the
first session.

Table 5 depicts patient’s 102 data, in which movements M1, M2, M3 witness
a gradual decrease of squared jerk mean until the last rehabilitation session.
Contrary, the M1 mean squared jerk stops lessening after the second session.
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Table 4: Squared jerk measures for patient 101 across four sessions,
along axis x.

Patient 101

Mean Max Min

axis x Session 1 Session2 Session3 Session4 Session 1 Session2 Session3 Session4 Session 1 Session2 Session3 Session4

M1 7,61 2,62 4,63 5,23 1357,01 445,53 581,59 968,97 1,64E-07 2,22E-12 4,59E-08 3,55E-11

M2 2,03 2,16 7,52 5,20 267,21 484,64 3781,94 1086,66 1,04E-07 1,05E-08 2,22E-08 2,82E-09

M3 2,14 4,05 3,21 8,03 406,89 2257,01 604,45 3965,67 6,13E-08 8,39E-09 4,69E-09 3,60E-08

M4 0,58 0,73 2,88 2,49 44,56 163,14 1068,82 1034,61 2,24E-09 1,52E-08 8,85E-10 5,00E-10

Fig. 7: Squared jerk values for movement M4 in session 1 and 4- Pa-
tient 101.

It is clear that the three patients 100, 102, 103 have reached lower squared
jerk means than those of their first sessions, for at least three movements.

How good is jerk as a smooth indicator? Overall, it is not trivial to
compare the jerk values of healthy individuals to the ones of the patients owing
to the way the patients performed the movements. In particular, when patients
have difficulties to perform the movements in a consistent way, it implies that
a simple comparison of healthy movements’ jerk values and patients ones is not
always conclusive. For example, in the case of movement M1, the jerk mean value
is higher within healthy samples than the patient samples. Despite that, the
mean squared jerk values provide interesting insights concerning the evolution
of patients across the four sessions. Our conclusions do align with the clinicians’
closures: most patients’ smoothness improved when compared to the first session.
Additionally, for patient 101, the patient that presented more motor function
issues during the sessions, we observed the least improvement in terms of squared
jerk mean values.
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Table 5: squared jerk measures for patient 102 across four sessions,
along axis x.

Patient 102

Mean Max Min

axis x Session 1 Session2 Session3 Session4 Session 1 Session2 Session3 Session4 Session 1 Session2 Session3 Session4

M1 4,27 1,18 4,82 7,09 5256,19 49,80 3829,05 7841,56 1,61E-08 2,90E-09 1,50E-08 8,84E-12

M2 2,89 4,61 2,21 1,78 473,36 2788,06 353,56 739,78 5,98E-09 4,09E-08 8,61E-10 3,77E-08

M3 1,03 1,56 1,03 0,58 88,71 405,24 117,23 81,77 1,26E-09 0 3,21E-08 6,56E-09

M4 1,90 1,25 1,67 0,84 306,19 165,53 184,44 125,36 1,22E-08 1,77E-09 3,01E-08 2,59E-09

Table 6: squared jerk measures for patient 103 across four sessions,
along axis x.

Patient 103

Mean Max Min

axis x Session 1 Session2 Session3 Session4 Session 1 Session2 Session3 Session4 Session 1 Session2 Session3 Session4

M1 8,57 16,17 9,97 9,47 2570,08 19318,73 2733,30 1991,19 2,35E-08 2,79E-08 5,36E-11 7,71E-08

M2 2,80 4,34 1,88 3,79 500,42 2143,84 222,50 1488,18 2,18E-07 1,73E-09 1,29E-09 4,98E-08

M3 1,66 2,14 1,86 1,34 1039,28 707,50 297,98 331,72 8,53E-09 2,33E-10 2,86E-08 3,82E-08

M4 3,18 4,12 2,11 2,52 4304,22 2560,54 1628,78 713,06 4,45E-10 8,66E-09 3,60E-08 4,36E-01

7 Conclusion

In this paper, we have presented a fully automatic assessment stroke patients
pipeline, combining a deep learning model and a smoothness quality module
based on the jerk measure, which is computed on movements inspired from
the valid clinical functional Fugl-Meyer scale. The classification of movements
reached a good accuracy even though the dataset is small, probably due to the
data augmentation performed on the original signal. The jerk has proved to be a
promising measure to assess stroke patients when compared to healthy subjects,
while squared jerk gives a good indication for intersession patient’s performance
variability.

Alike all vision and machine learning tasks that are not image or NLP re-
lated, the data available for our task is few. Hence, in the future work will be
directed toward enhancing available data and exploiting more robust smoothness
measures.
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