toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Klara Janousckova; Jiri Matas; Lluis Gomez; Dimosthenis Karatzas edit   pdf
url  doi
openurl 
  Title Text Recognition – Real World Data and Where to Find Them Type Conference Article
  Year 2020 Publication 25th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 4489-4496  
  Keywords  
  Abstract (down) We present a method for exploiting weakly annotated images to improve text extraction pipelines. The approach uses an arbitrary end-to-end text recognition system to obtain text region proposals and their, possibly erroneous, transcriptions. The method includes matching of imprecise transcriptions to weak annotations and an edit distance guided neighbourhood search. It produces nearly error-free, localised instances of scene text, which we treat as “pseudo ground truth” (PGT). The method is applied to two weakly-annotated datasets. Training with the extracted PGT consistently improves the accuracy of a state of the art recognition model, by 3.7% on average, across different benchmark datasets (image domains) and 24.5% on one of the weakly annotated datasets 1 1 Acknowledgements. The authors were supported by Czech Technical University student grant SGS20/171/0HK3/3TJ13, the MEYS VVV project CZ.02.1.01/0.010.0J16 019/0000765 Research Center for Informatics, the Spanish Research project TIN2017-89779-P and the CERCA Programme / Generalitat de Catalunya.  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ JMG2020 Serial 3557  
Permanent link to this record
 

 
Author Lluis Gomez; Dimosthenis Karatzas edit   pdf
doi  openurl
  Title MSER-based Real-Time Text Detection and Tracking Type Conference Article
  Year 2014 Publication 22nd International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 3110 - 3115  
  Keywords  
  Abstract (down) We present a hybrid algorithm for detection and tracking of text in natural scenes that goes beyond the fulldetection approaches in terms of time performance optimization.
A state-of-the-art scene text detection module based on Maximally Stable Extremal Regions (MSER) is used to detect text asynchronously, while on a separate thread detected text objects are tracked by MSER propagation. The cooperation of these two modules yields real time video processing at high frame rates even on low-resource devices.
 
  Address Stockholm; August 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 600.056; 601.158; 601.197; 600.077 Approved no  
  Call Number Admin @ si @ GoK2014a Serial 2492  
Permanent link to this record
 

 
Author Muhammad Muzzamil Luqman; Thierry Brouard; Jean-Yves Ramel; Josep Llados edit  doi
isbn  openurl
  Title A Content Spotting System For Line Drawing Graphic Document Images Type Conference Article
  Year 2010 Publication 20th International Conference on Pattern Recognition Abbreviated Journal  
  Volume 20 Issue Pages 3420–3423  
  Keywords  
  Abstract (down) We present a content spotting system for line drawing graphic document images. The proposed system is sufficiently domain independent and takes the keyword based information retrieval for graphic documents, one step forward, to Query By Example (QBE) and focused retrieval. During offline learning mode: we vectorize the documents in the repository, represent them by attributed relational graphs, extract regions of interest (ROIs) from them, convert each ROI to a fuzzy structural signature, cluster similar signatures to form ROI classes and build an index for the repository. During online querying mode: a Bayesian network classifier recognizes the ROIs in the query image and the corresponding documents are fetched by looking up in the repository index. Experimental results are presented for synthetic images of architectural and electronic documents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN 978-1-4244-7542-1 Medium  
  Area Expedition Conference ICPR  
  Notes DAG Approved no  
  Call Number DAG @ dag @ LBR2010b Serial 1460  
Permanent link to this record
 

 
Author Sergi Garcia Bordils; Dimosthenis Karatzas; Marçal Rusiñol edit   pdf
url  openurl
  Title STEP – Towards Structured Scene-Text Spotting Type Conference Article
  Year 2024 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 883-892  
  Keywords  
  Abstract (down) We introduce the structured scene-text spotting task, which requires a scene-text OCR system to spot text in the wild according to a query regular expression. Contrary to generic scene text OCR, structured scene-text spotting seeks to dynamically condition both scene text detection and recognition on user-provided regular expressions. To tackle this task, we propose the Structured TExt sPotter (STEP), a model that exploits the provided text structure to guide the OCR process. STEP is able to deal with regular expressions that contain spaces and it is not bound to detection at the word-level granularity. Our approach enables accurate zero-shot structured text spotting in a wide variety of real-world reading scenarios and is solely trained on publicly available data. To demonstrate the effectiveness of our approach, we introduce a new challenging test dataset that contains several types of out-of-vocabulary structured text, reflecting important reading applications of fields such as prices, dates, serial numbers, license plates etc. We demonstrate that STEP can provide specialised OCR performance on demand in all tested scenarios.  
  Address Waikoloa; Hawai; USA; January 2024  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG Approved no  
  Call Number Admin @ si @ GKR2024 Serial 3992  
Permanent link to this record
 

 
Author Joan M. Nuñez; Jorge Bernal; Miquel Ferrer; Fernando Vilariño edit   pdf
doi  openurl
  Title Impact of Keypoint Detection on Graph-based Characterization of Blood Vessels in Colonoscopy Videos Type Conference Article
  Year 2014 Publication CARE workshop Abbreviated Journal  
  Volume Issue Pages  
  Keywords Colonoscopy; Graph Matching; Biometrics; Vessel; Intersection  
  Abstract (down) We explore the potential of the use of blood vessels as anatomical landmarks for developing image registration methods in colonoscopy images. An unequivocal representation of blood vessels could be used to guide follow-up methods to track lesions over different interventions. We propose a graph-based representation to characterize network structures, such as blood vessels, based on the use of intersections and endpoints. We present a study consisting of the assessment of the minimal performance a keypoint detector should achieve so that the structure can still be recognized. Experimental results prove that, even by achieving a loss of 35% of the keypoints, the descriptive power of the associated graphs to the vessel pattern is still high enough to recognize blood vessels.  
  Address Boston; USA; September 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CARE  
  Notes MV; DAG; 600.060; 600.047; 600.077;SIAI Approved no  
  Call Number Admin @ si @ NBF2014 Serial 2504  
Permanent link to this record
 

 
Author Ernest Valveny; Enric Marti edit   pdf
doi  openurl
  Title Deformable Template Matching within a Bayesian Framework for Hand-Written Graphic Symbol Recognition Type Journal Article
  Year 2000 Publication Graphics Recognition Recent Advances Abbreviated Journal  
  Volume 1941 Issue Pages 193-208  
  Keywords  
  Abstract (down) We describe a method for hand-drawn symbol recognition based on deformable template matching able to handle uncertainty and imprecision inherent to hand-drawing. Symbols are represented as a set of straight lines and their deformations as geometric transformations of these lines. Matching, however, is done over the original binary image to avoid loss of information during line detection. It is defined as an energy minimization problem, using a Bayesian framework which allows to combine fidelity to ideal shape of the symbol and flexibility to modify the symbol in order to get the best fit to the binary input image. Prior to matching, we find the best global transformation of the symbol to start the recognition process, based on the distance between symbol lines and image lines. We have applied this method to the recognition of dimensions and symbols in architectural floor plans and we show its flexibility to recognize distorted symbols.  
  Address  
  Corporate Author Springer Verlag Thesis  
  Publisher Springer Verlag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG;IAM; Approved no  
  Call Number IAM @ iam @ MVA2000 Serial 1655  
Permanent link to this record
 

 
Author Ernest Valveny; Enric Marti edit   pdf
doi  openurl
  Title A model for image generation and symbol recognition through the deformation of lineal shapes Type Journal Article
  Year 2003 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 24 Issue 15 Pages 2857-2867  
  Keywords  
  Abstract (down) We describe a general framework for the recognition of distorted images of lineal shapes, which relies on three items: a model to represent lineal shapes and their deformations, a model for the generation of distorted binary images and the combination of both models in a common probabilistic framework, where the generation of deformations is related to an internal energy, and the generation of binary images to an external energy. Then, recognition consists in the minimization of a global energy function, performed by using the EM algorithm. This general framework has been applied to the recognition of hand-drawn lineal symbols in graphic documents.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Science Inc. Place of Publication New York, NY, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8655 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; IAM Approved no  
  Call Number IAM @ iam @ VAM2003 Serial 1653  
Permanent link to this record
 

 
Author Albert Gordo; Florent Perronnin edit  doi
isbn  openurl
  Title A Bag-of-Pages Approach to Unordered Multi-Page Document Classification Type Conference Article
  Year 2010 Publication 20th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 1920–1923  
  Keywords  
  Abstract (down) We consider the problem of classifying documents containing multiple unordered pages. For this purpose, we propose a novel bag-of-pages document representation. To represent a document, one assigns every page to a prototype in a codebook of pages. This leads to a histogram representation which can then be fed to any discriminative classifier. We also consider several refinements over this initial approach. We show on two challenging datasets that the proposed approach significantly outperforms a baseline system.  
  Address Istanbul (Turkey)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN 978-1-4244-7542-1 Medium  
  Area Expedition Conference ICPR  
  Notes DAG Approved no  
  Call Number Admin @ si @ GoP2010 Serial 1480  
Permanent link to this record
 

 
Author Jordy Van Landeghem; Ruben Tito; Lukasz Borchmann; Michal Pietruszka; Pawel Joziak; Rafal Powalski; Dawid Jurkiewicz; Mickael Coustaty; Bertrand Anckaert; Ernest Valveny; Matthew Blaschko; Sien Moens; Tomasz Stanislawek edit   pdf
url  openurl
  Title Document Understanding Dataset and Evaluation (DUDE) Type Conference Article
  Year 2023 Publication 20th IEEE International Conference on Computer Vision Abbreviated Journal  
  Volume Issue Pages 19528-19540  
  Keywords  
  Abstract (down) We call on the Document AI (DocAI) community to re-evaluate current methodologies and embrace the challenge of creating more practically-oriented benchmarks. Document Understanding Dataset and Evaluation (DUDE) seeks to remediate the halted research progress in understanding visually-rich documents (VRDs). We present a new dataset with novelties related to types of questions, answers, and document layouts based on multi-industry, multi-domain, and multi-page VRDs of various origins and dates. Moreover, we are pushing the boundaries of current methods by creating multi-task and multi-domain evaluation setups that more accurately simulate real-world situations where powerful generalization and adaptation under low-resource settings are desired. DUDE aims to set a new standard as a more practical, long-standing benchmark for the community, and we hope that it will lead to future extensions and contributions that address real-world challenges. Finally, our work illustrates the importance of finding more efficient ways to model language, images, and layout in DocAI.  
  Address Paris; France; October 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCV  
  Notes DAG Approved no  
  Call Number Admin @ si @ LTB2023 Serial 3948  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; David Fernandez; Ernest Valveny; Josep Llados; Gemma Sanchez edit   pdf
doi  openurl
  Title Unsupervised wall detector in architectural floor plan Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1245-1249  
  Keywords  
  Abstract (down) Wall detection in floor plans is a crucial step in a complete floor plan recognition system. Walls define the main structure of buildings and convey essential information for the detection of other structural elements. Nevertheless, wall segmentation is a difficult task, mainly because of the lack of a standard graphical notation. The existing approaches are restricted to small group of similar notations or require the existence of pre-annotated corpus of input images to learn each new notation. In this paper we present an automatic wall segmentation system, with the ability to handle completely different notations without the need of any annotated dataset. It only takes advantage of the general knowledge that walls are a repetitive element, naturally distributed within the plan and commonly modeled by straight parallel lines. The method has been tested on four datasets of real floor plans with different notations, and compared with the state-of-the-art. The results show its suitability for different graphical notations, achieving higher recall rates than the rest of the methods while keeping a high average precision.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.061; 600.056; 600.045 Approved no  
  Call Number Admin @ si @ HFV2013 Serial 2319  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: