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Abstract—We present a hybrid algorithm for detection and
tracking of text in natural scenes that goes beyond the full-
detection approaches in terms of time performance optimization.
A state-of-the-art scene text detection module based on Maxi-
mally Stable Extremal Regions (MSER) is used to detect text
asynchronously, while on a separate thread detected text objects
are tracked by MSER propagation. The cooperation of these two
modules yields real time video processing at high frame rates
even on low-resource devices.

I. INTRODUCTION

Camera based scene text analysis applications targeted
specifically for mobile and wearable devices is an interesting
area of research receiving increasing attention [1], [2], [3],
[4], [5], [6], [7]. Although the newly arrived products in the
mobile device market (2013) feature high definition cameras
of up to 12 mega-pixel sensors, and powerful quad-core
processors, they still have many limitations in comparison
with standard desktop computers: e.g. slow memories, limited
floating-point support, and very small internal caches. This
work attempts to bring real-time scene text detection to low-
resource wearable devices. The contribution of this paper is
mainly on the methodological aspect, presenting a simple but
effective method for text detection and tracking suitable for
devices with limited computational power. We demonstrate
how a reasonably fast text detection method can be efficiently
combined with tracking to give rise to real-time performance
on such devices.

Text detection in video sequences differs from still images
in many aspects and it is not a straightforward assumption that
a method devised and trained on static text images would be
applicable to video sequences. A key characteristic of video
sequences is the temporal redundancy of text, which calls
for tracking based processes taking advantage of past history
to increase the stability and quality of detections. Keeping
constant track of a text object throughout all the frames where
it is visible is desirable for example to ensure a unique response
of the system (e.g. translation, or text to speech conversion)
for each distinct text, and also to be able to enhance the text
regions [8], or to select the best frames in which they appear,
before doing the full text recognition. Moreover, one can take
advantage of the tracking process in order to obtain a real-
time detection system, under the assumption that the scene
does not change much from frame to frame. This yields an
extra speed-up that can be exploited in see-though applications
(e.g. Augmented Reality translation [6], [7] and augmented
documents [9]) or street-view navigation [5].

The proposed method combines two separate modules: a
text detection module based on a Multi-Script Scene Text

Extraction algorithm [10], and a MSER-based tracking mod-
ule [11]. As both detection and tracking modules are based
on MSER they can be integrated symbiotically, improving
robustness and providing a speed boost to the system. Real-
time text detection is simulated by propagating in time the
previously detected text-regions, until a new text detection
takes place.

The novelty of the proposed method lies in the ability
to effectively track text regions (establishing a pixel level
segmentation of constituent text parts in every frame), not
merely their bounding boxes as usually done in state-of-the-art
tracking-by-detection algorithms [12], while providing a con-
siderable speed-up in comparison to performing a full frame
text detection on each frame. Moreover, the proposed method
can deal with rotation, translation, scaling, and perspective
deformations of detected text.

The system has been implemented for a mobile plat-
form and the obtained results demonstrate state of the art
performance at real-time frame rates. Our experiments show
that MSER-based text tracking outperforms full-detection ap-
proaches, i.e. methods performing a full text detection each
frame, in terms of computation cost while achieving similar
accuracy rates.

In the next section we review briefly related state of the
art. Section III describes the different aspects of the detection
and tracking system. In section IV results are given and time
performance is measured, before the paper closes with our
conclusions in section V.

II. RELATED WORK

Comprehensive surveys on camera based document anal-
ysis advances can be found in Jung et al. [13], Liang et
al. [14], or Zhang and Kasturi [15], being the latter dedicated
exclusively to text detection and tracking in video.

For the task of scene text detection in still images, the
large number of published methods can be divided into texture-
based and region-based approaches. To shortly summarize
recent leading research on texture-based methods, Coates et
al. [16] and Wang et al. [17] have proposed the use of
unsupervised feature learning to generate the features for text
versus non-text patch classification. Wang et al. [18] have
built an end-to-end scene text recognition system based on a
sliding window character classifier using Random Ferns, with
features originating from the Histogram of Oriented Gradients
(HOG) descriptor. On the other hand, among the many recently
published region-based methods we can observe an increas-
ing use of the Maximally Stable Extremal Regions (MSER)
algorithm for character candidates detection. For example,
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Chen et al. [19] obtain state-of-the-art performance with a
method that determines the stroke width of edge-enhanced
MSERs using the Distance Transform. The effectiveness of
MSER is also exploited by Novikova et al. [20] and Merino
et al. [3] among others, while Neumann and Matas [21]
propose a region representation derived from MSER where
character/non-character classification is done for each possible
Extremal Region (ER). An interesting observation about state
of the art text detection in still images is that there is a whole
corpus of methods using MSER-related techniques that can
eventually benefit from using MSER-tracking as we propose
in this paper.

Relevant work on video based text detection and tracking
can be categorized into batch-processing and online-processing
methods. Within the former category, Li et al. [22] proposed
a text tracking scheme where a SSD (Sum of Squared Differ-
ences) based correlation module was used to track the detected
text between adjacent frames. Crandall et al. [23] proposed a
method for caption text extraction where the motion vectors
encoded in MPEG-compressed videos were used for tracking.
Gllavata et al. [24] take advantage of temporal redundancy
for detecting challenging text displayed against a complex
background, by building a multi-frame clustering. Myers and
Burns [25] propose a method to track planar regions of scene
text with arbitrary 3-D rigid motion by correlating small
patches and computing homographies on multi-frame blocks
simultaneously. All the aforementioned text tracking methods
were designed for off-line video processing, and thus are not
directly applicable to a real-time system.

Regarding online-processing, Kim et al. [26] proposed a
method that analyses the textural properties of text in images
using a sliding window based classifier, and then locates and
tracks the text regions by applying the continuously adaptive
mean shift algorithm (CAMSHIFT) [27] on the texture classifi-
cation results. Merino and Mirmehdi develop in [2] a real-time
probabilistic tracking framework based on particle filtering,
where SIFT matching is used to identify text regions from one
frame to the next. Their region based text detection method
is further extended in [3], where the authors present a head-
mounted device for text recognition in natural scenes. A similar
wearable camera system for the blind is presented in the work
of Goto and Tanaka [4] where text strings are extracted using a
DCT-based method [28] and then grouped into temporal chains
by a text tracking method also based on particle filter. Minetto
et al. [5] propose a method combining a region-based text
detection algorithm [29] with a particle filter tracking module.
Fragoso et al. [6] have developed an Augmented Reality (AR)
see-through text translator where the initial text detection is
done with help of the user, which has to tap on the screen
near the center of the word of interest, then the plane in
which text stands is tracked in real-time using efficient second-
order minimization (ESM). Petter et al. [7] have extended this
application with automatic text detection (not requiring the
user interaction) based on Connected Components analysis on
the Canny edge detector output.

From the methods described, only [2] [4] and [7] report
comparable frame rates to our method proposal (between 7
fps. and 10 fps.), but in [2] and [4] processing times are
calculated in a standard PC and not in low-resource devices.
The key difference is that [2] and [4] make use of a full-

detection strategy, performing a full text detection on every
frame, in order to provide observations to the tracking system,
while in our method the detection module is only performed
periodically in a subset of the incoming frames. On the other
hand, although [22] and [5] use a similar strategy to combine
and merge text detections and tracked text regions, in our
method the detection algorithm is executed asynchronously in
a separate thread, thus not affecting to the overall speed of the
system. An analogue multi-threaded tracking solution is also
used by Takeda et al. [9] in a document retrieval AR system
to display relevant information as an image superimposed in
real-time over the camera captured frames.

Another important difference between the work presented
here and the ones in [5], [22], [26], [6] is that our system is
able to obtain an updated segmentation of tracked characters
at every frame, despite not doing a full detection. Since we are
not tracking just bounding box information but the text-regions
themselves, we can take advantage of several segmentations
of each character that would eventually lead to improved
recognition accuracy.

Finally, while most of the described methods are con-
strained to detect horizontally aligned text [2] [4] [5] [7], and
pure translational movement models [5] [22] [23], our method
can deal with multi-oriented text and is able to track it under
scale, rotation, and perspective distortions.

III. TEXT DETECTION AND TRACKING METHOD

In this Section we proceed to explain the text detection and
tracking modules comprising our system, as well as the way
they are integrated. As we make use of an already published
method for the text detection module [10], this section will
extend more on the tracking part and in the implementation
details for the integration of detection and tracking, while
providing a more compact description of the text detection
algorithm.

Fig. 1: Timeline view of the text detection and tracking
modules’ combination. Rectangles represent lasting processes
in time and diamonds are the output of the system. The
detection module creates the first estimates of text object
positions, which are propagated to subsequent frames by the
tracking module. Each time the detection module provides
new results, a merging mechanism combines the detected and
tracked objects in a unique output (maroon diamonds).

Figure 1 shows a timeline representation of the proposed
method. The main idea behind our proposal is that even with
a slow text detection method it is possible to achieve real-
time performance by running it periodically while in parallel
a fast tracking module takes care of propagating previous
detections for the frames that are not processed by the detection
module. The overall speed of the process really only depends
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on the tracking module, therefore the system can be real-
time. However, the speed of the text detector is nevertheless
important, as it is the only source of new information to the
system, and long times between consecutive detections could
deteriorate substantially the overall performance.

A. Text Detection Module

The first step of the text detection module [10] is to
extract Maximally Stable Extremal Regions (MSER) [30] in
a given still frame in order to obtain text-region candidates.
The extracted MSERs give rise to different possible grouping
hypotheses, some groups being more perceptually meaningful
than others. In order to create grouping hypotheses we take
into account the spatial proximity of regions in relation to
different manifestations of similarity, such as colour similarity,
stroke width similarity, size similarity etc. For each such
similarity definition a dendrogram is built using Single Linkage
Clustering, in which each node represents a possible group of
regions.

The assessment of the meaningfulness of a group is based
on the a contrario approach to Hierarchical Clustering validity
assessment proposed by F.Cao et al. [31], itself stemming from
a more general perceptual organization framework [32]. The
combination of different grouping hypotheses produced using
distinct feature sets is performed using Evidence Accumulation
Clustering [33].

At this stage the algorithm produces relatively pure text-
only groups, with almost all text parts clustered together in
separate groups. In order to filter non-text groups a combi-
nation of two Real Adaboost classifiers is used, one at the
region level and the other at the group level. The detection
process finishes with a simple post-processing step aiming to
obtain text line level bounding boxes, based on an orientation
independent collinearity test.

B. Tracking Module

Our tracking module is built upon the framework proposed
by Donoser and Bischof in [11] where tracking of single
MSERs in successive frames is posed as a correspondence
problem within a window surrounding their previous location.
The component tree of this small windows can be used as an
efficient data structure to solve the correspondence problem:
contains all the information needed to search the best matching
region, and obviously can be computed much faster than for
the whole image.

Figure 2 shows how finding the corresponding MSER
between two consecutive frames can be done efficiently by
constraining the search in two ways: searching only in the
component tree of a small window (Figure 2b), and looking
only in a sub-set of the tree levels (Figure 2c). These two
constraints define two parameters for the tracking method: the
size of the window (with respect to the query region size), and
the levels interval to look for (with respect to the level of the
query region).

Notice that the search process is done among all the regions
in the component tree and would be able to find correct
matches even when the target region has lost the stability
criteria (e.g. appears blurred) in the consecutive frame.

Fig. 2: Tracking of single MSER regions posed as search in
the component tree of a small region of interest.

MSER-tracking has been used effectively for license
plate [34] and hand [35] tracking using a weighted vector of
simple features: mean gray value, region size, center of mass,
width and height of the bounding box, and stability. A further
extension in [36] makes use of novel shape descriptors in order
to increment the robustness of the tracking by considering
shape similarity.

The tracking module proposed in this paper differs from
the work of Donoser and Bischof in two aspects by considering
the specificities of text regions: 1) We use invariant moments
as features to find correspondences, as a tradeoff between the
fast computation of the simple features used in [11] and the
robustness of the shape descriptors in [36]. 2) Here we consider
groups of regions (text lines) instead of a single MSER as done
in [34] and [35], and thus we can detect mismatches using
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RANSAC when they do not fit an underlying line model.

1) MSER-tracking with incrementally computable invari-
ant moments: The inclusion relation between regions in the
component tree can be exploited to extract incrementally
computable descriptors without any extra computational cost
as proposed in [37] [21]. Geometric moments [38] [39] can be
calculated in this way and thus result in a invariant descriptor
that can be used efficiently by the MSER-tracking algorithm
for matching. At each grow step of the MSER algorithm the
raw moments up to order three are updated with constant com-
plexity. Then, when required in order to find correspondences,
those raw moments can derive the seven Hu’s moments [38]
and four Affine Invariant Moments [39] again with constant
complexity.

Invariant moments have generally robust performance for
rigid objects with simple contour shapes and simple trans-
formations such as scaling, rotation, and affine transforma-
tions [40]. This is the case for text characters [41], assuming
that they do not change much in shape between successive
frames. We consider this compact descriptor to be tradeoff
between of the simple feature based analysis in [11] and the
integral shape descriptors used in [36], as they provide a
richer representation than the former while being much less
computationally expensive than the latter.

Moreover, in cases where invariant moments are prone to
fail: e.g. for particularly weak shaped characters (e.g. letter
”I”), partial occlusions, or motion blur mismatches, we can
take advantage from two particularities in our scenario: first
we have quite a constrained search along the component tree,
and second we can exploit the group-level (text line) coherence
in order to detect and reject mismatching correspondences via
RANSAC.

2) Mismatch detection with RANSAC: Fitting a simple
linear regression model against individually tracked MSERs
using RANSAC allows to improve the whole text-line track-
ing because false correspondences do not affect the tracking
process as they are eliminated by the RANSAC algorithm
consensus set and thus not propagated to subsequent frames.
This way the tracking module is able to robustly track text lines
even when some of their characters are not correctly tracked.
This outlier detection makes the method more robust in case
of partial occlusion of the text line tracked.

Notice that RANSAC here is used as an outlier detection
mechanism and not as an homography estimator as done in
other tracking algorithms. Regions not correctly tracked are
detected as outliers in a simple linear regression model and
removed from the tracking system for the following frames.
This process allows also to naturally stop the tracking process
when the number of inliers for a text-line in a given frame is
less than 3 regions.

C. Merging detected regions and propagated regions

Each time the detection module provides new results from
a new full detection a merging mechanism, depicted with
maroon diamonds in Figure 1, is needed in order to identify
if the newly arrived detections are the same we are already
tracking or not. This matching is done with the Hungarian
algorithm by optimizing the one-to-one overlapping of the min.
enclosing boxes of detected and tracked text lines.

Matched text lines are updated with the newly detected
MSERs, thus regenerating the tracking process with new
evidences, and may also recuperate regions that have been
lost during the tracking process (i.e. detected as outliers and
removed from the system). Not matched text-lines are treated
as ”first time viewed” objects and start their own tracking
process from their initial locations.

IV. EXPERIMENTS

We have evaluated our algorithm for the task of text
detection and tracking in a dataset of synthetically generated
video sequences. The dataset contains 10 sequences of 400
frames, with a resolution of 640×480 pixels, where still images
from the ICDAR [42] and MSRRC [43] datasets are deformed
iteratively with random rotation, translation, scale changes,
and perspective transformations. Figure 4 shows two example
sequences from the generated synthetic dataset. The main
reason for the use of synthetic data in this series of experiments
is that ground truth data can be created automatically, without
any labelling effort.

Fig. 3: Text Detection and Tracking performance comparison
in the synthetic dataset.

Figure 3 shows the CLEAR-MOT metrics [44] perfor-
mance comparison of the proposed method against two other
approaches: Performing the full-detection on every frame, and
MSER-tracking with simple features as in [11]. We can see
how the proposed method outperforms the others both in
tracking precision (MOTP) and accuracy (MOTA). MOTP is
basically an average measure of the overlapping of correct
detections and ground-truth text lines over the whole video
sequence. We can see how this value is lower for the MSER-
tracking with simpler features, indicating that the simple fea-
tures are not enough to correctly track individual regions and
thus produce less accurate bounding boxes at the text line level.
The MOTA metric accounts for all errors made by the tracker:
false positives, misses, and mismatches, over all the frames in
a video sequence. The lower accuracy for the full-detection
approach is due to missing objects, that the MSER-tracking is
able to compensate by correctly propagating the detections of
previous frames. In the MSER-tracking approaches the main
source of MOTA errors are false positive detections provided
by the detection module, which are propagated in time. On
the other hand, the difference in accuracy between the two
MSER-tracking methods indicate that invariant moments are
more robust than the simpler feature vector.
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Fig. 4: Still frame results from two of the synthetic image sequences (top) and two of the real scene image sequences (bottom)
used for performance evaluation.

We further evaluated our method qualitatively in two sets
of real scene image sequences: a set of 4 videos provided
in [2], and a set of 10 videos obtained by the authors with a
mobile device. The obtained results (see Figure 4) show that
in general the system is able to detect and track the targeted
text correctly dealing with rotation, translation, scaling, and
perspective deformations. There are however errors of missing
text components in the presence of motion blur and strong
illumination changes. Nevertheless it is worth noting that in
such situations the tracking module is still able to propagate
some regions that would otherwise result in missed text by the
detection module.

A. Time performance

In order to obtain time performance measurements and
qualitative results for the task of text detection and tracking,
we have implemented the proposed method using the Android
development framework provided by the OpenCV 1 library,
and tested it in a tablet computer with a 1.5GHz quad-core
processor.

Table I shows average time performance measurements for
each of the method modules. The average frame rate of the
system is 15 fps., a value just slightly lower than the achievable
from the Android camera service (without any image process-
ing) for the concrete device used in the evaluation. Such a fast
performance is achieved thanks to the negligible timestamp of
the tracking module (40 ms. in average). On the other hand,
the detection module running in the background needs about 1
second in average to provide localization results, this is roughly
double the time to do the same processing in the main thread.
Such a relatively low performance affects the system with a
noticeable delay when new targets appear into the scene and
to recover a missed target.

1http://opencv.org/platforms/android.html

TABLE I: Average time performance measurements.

Android device Standard PC
avg. time fps. avg. time fps.

Text detection module (async.) 1041.01 ms. n.a. 53.45 ms. n.a.
Initial merging and tracking 125.57 ms. 7.96 17.11 ms. 58.44
Text tracking module 40.01 ms. 24.99 6.91 ms. 144.71

As shown in Table I the system has a variable frame rate:
it is able to achieve a really high average frame rate (near 25
fps.) during the tracking process (this is most of the time),
but once the asynchronous detection process finishes (every 1
second in average) the frame rate slows down to 8 fps. but
just for one frame, as the new detections must be propagated
and matched with the existing ones. All in all, the proposed
method demonstrates real-time performance in low-resource
devices with an average frame rate of 15 fps.

Time performance measurements for the tracking module
would increase linearly with the number of tracked regions and
the size of their search windows. In the evaluated sequences
the average number of tracked regions is 21, covering around
10% of the input image size, which fits well with a realistic
scene text detection scenario.

V. CONCLUSIONS AND FUTURE WORK

We have presented a method for detection and tracking
of scene text able to work in real-time on low-resource
mobile devices. Although far from being a final solution, the
proposed method goes beyond the full-detection approaches in
terms of time performance optimization. The combination of
text detection with a tracker, provides considerable stability,
allowing the system to provide predicted estimates in cases
where the detection module itself is not capable of returning
a valid response. The use of MSER-tracking as an alternative,
fast technique to provide simulated text detections for the
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frames that are not processed by the full frame text detector
proves to be an adequate solution, providing the system with
enough information to continue tracking until the text detector
returns updated positions.

The main limitation of the proposed method is the track-
ing degradation in presence of severe motion blur or strong
illumination changes.

As in all tracking systems, the longer the full frame text
detector takes to provide a result, the higher the uncertainty of
the tracker will grow. At the same time, the response of the
full frame text detector will be less reliable as more frames
pass since the one being processed. Therefore, it is important
that reasonably fast text detection methods are used in such a
framework to ensure that tracking does not deteriorate rapidly.

As future work, further optimization of the text detection
algorithm would improve the system in several ways, reducing
the delay on initial detections and providing robustness to the
tracking module with more frequent detection measurements.

On another hand, adding probabilistic estimation tech-
niques (e.g. Kalman Filter) for each of the tracked regions
would yield improved robustness in more challenging se-
quences e.g. total occlusions, severe motion blur, and strong
illumination changes.
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