toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links (down)
Author Marçal Rusiñol; David Aldavert; Ricardo Toledo; Josep Llados edit  doi
openurl 
  Title Efficient segmentation-free keyword spotting in historical document collections Type Journal Article
  Year 2015 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 48 Issue 2 Pages 545–555  
  Keywords Historical documents; Keyword spotting; Segmentation-free; Dense SIFT features; Latent semantic analysis; Product quantization  
  Abstract In this paper we present an efficient segmentation-free word spotting method, applied in the context of historical document collections, that follows the query-by-example paradigm. We use a patch-based framework where local patches are described by a bag-of-visual-words model powered by SIFT descriptors. By projecting the patch descriptors to a topic space with the latent semantic analysis technique and compressing the descriptors with the product quantization method, we are able to efficiently index the document information both in terms of memory and time. The proposed method is evaluated using four different collections of historical documents achieving good performances on both handwritten and typewritten scenarios. The yielded performances outperform the recent state-of-the-art keyword spotting approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.076; 600.077; 600.061; 601.223; 602.006; 600.055 Approved no  
  Call Number Admin @ si @ RAT2015a Serial 2544  
Permanent link to this record
 

 
Author Debora Gil; Aura Hernandez-Sabate; Mireia Brunat;Steven Jansen; Jordi Martinez-Vilalta edit   pdf
doi  openurl
  Title Structure-preserving smoothing of biomedical images Type Journal Article
  Year 2011 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 44 Issue 9 Pages 1842-1851  
  Keywords Non-linear smoothing; Differential geometry; Anatomical structures; segmentation; Cardiac magnetic resonance; Computerized tomography  
  Abstract Smoothing of biomedical images should preserve gray-level transitions between adjacent tissues, while restoring contours consistent with anatomical structures. Anisotropic diffusion operators are based on image appearance discontinuities (either local or contextual) and might fail at weak inter-tissue transitions. Meanwhile, the output of block-wise and morphological operations is prone to present a block structure due to the shape and size of the considered pixel neighborhood. In this contribution, we use differential geometry concepts to define a diffusion operator that restricts to image consistent level-sets. In this manner, the final state is a non-uniform intensity image presenting homogeneous inter-tissue transitions along anatomical structures, while smoothing intra-structure texture. Experiments on different types of medical images (magnetic resonance, computerized tomography) illustrate its benefit on a further process (such as segmentation) of images.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes IAM; ADAS Approved no  
  Call Number IAM @ iam @ GHB2011 Serial 1526  
Permanent link to this record
 

 
Author Monica Piñol; Angel Sappa; Ricardo Toledo edit  doi
openurl 
  Title Adaptive Feature Descriptor Selection based on a Multi-Table Reinforcement Learning Strategy Type Journal Article
  Year 2015 Publication Neurocomputing Abbreviated Journal NEUCOM  
  Volume 150 Issue A Pages 106–115  
  Keywords Reinforcement learning; Q-learning; Bag of features; Descriptors  
  Abstract This paper presents and evaluates a framework to improve the performance of visual object classification methods, which are based on the usage of image feature descriptors as inputs. The goal of the proposed framework is to learn the best descriptor for each image in a given database. This goal is reached by means of a reinforcement learning process using the minimum information. The visual classification system used to demonstrate the proposed framework is based on a bag of features scheme, and the reinforcement learning technique is implemented through the Q-learning approach. The behavior of the reinforcement learning with different state definitions is evaluated. Additionally, a method that combines all these states is formulated in order to select the optimal state. Finally, the chosen actions are obtained from the best set of image descriptors in the literature: PHOW, SIFT, C-SIFT, SURF and Spin. Experimental results using two public databases (ETH and COIL) are provided showing both the validity of the proposed approach and comparisons with state of the art. In all the cases the best results are obtained with the proposed approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.055; 600.076 Approved no  
  Call Number Admin @ si @ PST2015 Serial 2473  
Permanent link to this record
 

 
Author Iban Berganzo-Besga; Hector A. Orengo; Felipe Lumbreras; Paloma Aliende; Monica N. Ramsey edit  doi
openurl 
  Title Automated detection and classification of multi-cell Phytoliths using Deep Learning-Based Algorithms Type Journal Article
  Year 2022 Publication Journal of Archaeological Science Abbreviated Journal JArchSci  
  Volume 148 Issue Pages 105654  
  Keywords  
  Abstract This paper presents an algorithm for automated detection and classification of multi-cell phytoliths, one of the major components of many archaeological and paleoenvironmental deposits. This identification, based on phytolith wave pattern, is made using a pretrained VGG19 deep learning model. This approach has been tested in three key phytolith genera for the study of agricultural origins in Near East archaeology: Avena, Hordeum and Triticum. Also, this classification has been validated at species-level using Triticum boeoticum and dicoccoides images. Due to the diversity of microscopes, cameras and chemical treatments that can influence images of phytolith slides, three types of data augmentation techniques have been implemented: rotation of the images at 45-degree angles, random colour and brightness jittering, and random blur/sharpen. The implemented workflow has resulted in an overall accuracy of 93.68% for phytolith genera, improving previous attempts. The algorithm has also demonstrated its potential to automatize the classification of phytoliths species with an overall accuracy of 100%. The open code and platforms employed to develop the algorithm assure the method's accessibility, reproducibility and reusability.  
  Address December 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MSIAU; MACO; 600.167;ADAS Approved no  
  Call Number Admin @ si @ BOL2022 Serial 3753  
Permanent link to this record
 

 
Author Miguel Oliveira; Victor Santos; Angel Sappa edit  doi
openurl 
  Title Multimodal Inverse Perspective Mapping Type Journal Article
  Year 2015 Publication Information Fusion Abbreviated Journal IF  
  Volume 24 Issue Pages 108–121  
  Keywords Inverse perspective mapping; Multimodal sensor fusion; Intelligent vehicles  
  Abstract Over the past years, inverse perspective mapping has been successfully applied to several problems in the field of Intelligent Transportation Systems. In brief, the method consists of mapping images to a new coordinate system where perspective effects are removed. The removal of perspective associated effects facilitates road and obstacle detection and also assists in free space estimation. There is, however, a significant limitation in the inverse perspective mapping: the presence of obstacles on the road disrupts the effectiveness of the mapping. The current paper proposes a robust solution based on the use of multimodal sensor fusion. Data from a laser range finder is fused with images from the cameras, so that the mapping is not computed in the regions where obstacles are present. As shown in the results, this considerably improves the effectiveness of the algorithm and reduces computation time when compared with the classical inverse perspective mapping. Furthermore, the proposed approach is also able to cope with several cameras with different lenses or image resolutions, as well as dynamic viewpoints.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.055; 600.076 Approved no  
  Call Number Admin @ si @ OSS2015c Serial 2532  
Permanent link to this record
 

 
Author Carme Julia; Angel Sappa; Felipe Lumbreras; Joan Serrat; Antonio Lopez edit   pdf
doi  openurl
  Title An Iterative Multiresolution Scheme for SFM with Missing Data: single and multiple object scenes Type Journal Article
  Year 2010 Publication Image and Vision Computing Abbreviated Journal IMAVIS  
  Volume 28 Issue 1 Pages 164-176  
  Keywords  
  Abstract Most of the techniques proposed for tackling the Structure from Motion problem (SFM) cannot deal with high percentages of missing data in the matrix of trajectories. Furthermore, an additional problem should be faced up when working with multiple object scenes: the rank of the matrix of trajectories should be estimated. This paper presents an iterative multiresolution scheme for SFM with missing data to be used in both the single and multiple object cases. The proposed scheme aims at recovering missing entries in the original input matrix. The objective is to improve the results by applying a factorization technique to the partially or totally filled in matrix instead of to the original input one. Experimental results obtained with synthetic and real data sequences, containing single and multiple objects, are presented to show the viability of the proposed approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0262-8856 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ JSL2010 Serial 1278  
Permanent link to this record
 

 
Author Joan Marc Llargues Asensio; Juan Peralta; Raul Arrabales; Manuel Gonzalez Bedia; Paulo Cortez; Antonio Lopez edit  doi
openurl 
  Title Artificial Intelligence Approaches for the Generation and Assessment of Believable Human-Like Behaviour in Virtual Characters Type Journal Article
  Year 2014 Publication Expert Systems With Applications Abbreviated Journal EXSY  
  Volume 41 Issue 16 Pages 7281–7290  
  Keywords Turing test; Human-like behaviour; Believability; Non-player characters; Cognitive architectures; Genetic algorithm; Artificial neural networks  
  Abstract Having artificial agents to autonomously produce human-like behaviour is one of the most ambitious original goals of Artificial Intelligence (AI) and remains an open problem nowadays. The imitation game originally proposed by Turing constitute a very effective method to prove the indistinguishability of an artificial agent. The behaviour of an agent is said to be indistinguishable from that of a human when observers (the so-called judges in the Turing test) cannot tell apart humans and non-human agents. Different environments, testing protocols, scopes and problem domains can be established to develop limited versions or variants of the original Turing test. In this paper we use a specific version of the Turing test, based on the international BotPrize competition, built in a First-Person Shooter video game, where both human players and non-player characters interact in complex virtual environments. Based on our past experience both in the BotPrize competition and other robotics and computer game AI applications we have developed three new more advanced controllers for believable agents: two based on a combination of the CERA–CRANIUM and SOAR cognitive architectures and other based on ADANN, a system for the automatic evolution and adaptation of artificial neural networks. These two new agents have been put to the test jointly with CCBot3, the winner of BotPrize 2010 competition (Arrabales et al., 2012), and have showed a significant improvement in the humanness ratio. Additionally, we have confronted all these bots to both First-person believability assessment (BotPrize original judging protocol) and Third-person believability assessment, demonstrating that the active involvement of the judge has a great impact in the recognition of human-like behaviour.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.055; 600.057; 600.076 Approved no  
  Call Number Admin @ si @ LPA2014 Serial 2500  
Permanent link to this record
 

 
Author Joan Serrat; Felipe Lumbreras; Antonio Lopez edit   pdf
doi  openurl
  Title Cost estimation of custom hoses from STL files and CAD drawings Type Journal Article
  Year 2013 Publication Computers in Industry Abbreviated Journal COMPUTIND  
  Volume 64 Issue 3 Pages 299-309  
  Keywords On-line quotation; STL format; Regression; Gaussian process  
  Abstract We present a method for the cost estimation of custom hoses from CAD models. They can come in two formats, which are easy to generate: a STL file or the image of a CAD drawing showing several orthogonal projections. The challenges in either cases are, first, to obtain from them a high level 3D description of the shape, and second, to learn a regression function for the prediction of the manufacturing time, based on geometric features of the reconstructed shape. The chosen description is the 3D line along the medial axis of the tube and the diameter of the circular sections along it. In order to extract it from STL files, we have adapted RANSAC, a robust parametric fitting algorithm. As for CAD drawing images, we propose a new technique for 3D reconstruction from data entered on any number of orthogonal projections. The regression function is a Gaussian process, which does not constrain the function to adopt any specific form and is governed by just two parameters. We assess the accuracy of the manufacturing time estimation by k-fold cross validation on 171 STL file models for which the time is provided by an expert. The results show the feasibility of the method, whereby the relative error for 80% of the testing samples is below 15%.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.057; 600.054; 605.203 Approved no  
  Call Number Admin @ si @ SLL2013; ADAS @ adas @ Serial 2161  
Permanent link to this record
 

 
Author Katerine Diaz; Aura Hernandez-Sabate; Antonio Lopez edit   pdf
doi  openurl
  Title A reduced feature set for driver head pose estimation Type Journal Article
  Year 2016 Publication Applied Soft Computing Abbreviated Journal ASOC  
  Volume 45 Issue Pages 98-107  
  Keywords Head pose estimation; driving performance evaluation; subspace based methods; linear regression  
  Abstract Evaluation of driving performance is of utmost importance in order to reduce road accident rate. Since driving ability includes visual-spatial and operational attention, among others, head pose estimation of the driver is a crucial indicator of driving performance. This paper proposes a new automatic method for coarse and fine head's yaw angle estimation of the driver. We rely on a set of geometric features computed from just three representative facial keypoints, namely the center of the eyes and the nose tip. With these geometric features, our method combines two manifold embedding methods and a linear regression one. In addition, the method has a confidence mechanism to decide if the classification of a sample is not reliable. The approach has been tested using the CMU-PIE dataset and our own driver dataset. Despite the very few facial keypoints required, the results are comparable to the state-of-the-art techniques. The low computational cost of the method and its robustness makes feasible to integrate it in massive consume devices as a real time application.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.085; 600.076;;IAM Approved no  
  Call Number Admin @ si @ DHL2016 Serial 2760  
Permanent link to this record
 

 
Author Jaume Amores edit   pdf
doi  openurl
  Title Multiple Instance Classification: review, taxonomy and comparative study Type Journal Article
  Year 2013 Publication Artificial Intelligence Abbreviated Journal AI  
  Volume 201 Issue Pages 81-105  
  Keywords Multi-instance learning; Codebook; Bag-of-Words  
  Abstract Multiple Instance Learning (MIL) has become an important topic in the pattern recognition community, and many solutions to this problemhave been proposed until now. Despite this fact, there is a lack of comparative studies that shed light into the characteristics and behavior of the different methods. In this work we provide such an analysis focused on the classification task (i.e.,leaving out other learning tasks such as regression). In order to perform our study, we implemented
fourteen methods grouped into three different families. We analyze the performance of the approaches across a variety of well-known databases, and we also study their behavior in synthetic scenarios in order to highlight their characteristics. As a result of this analysis, we conclude that methods that extract global bag-level information show a clearly superior performance in general. In this sense, the analysis permits us to understand why some types of methods are more successful than others, and it permits us to establish guidelines in the design of new MIL
methods.
 
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Science Publishers Ltd. Essex, UK Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-3702 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 601.042; 600.057 Approved no  
  Call Number Admin @ si @ Amo2013 Serial 2273  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: