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aCentre de Visió per Computador
bUniversitat Autònoma de Barcelona

Abstract

Evaluation of driving performance is of utmost importance in order to reduce road accident rate. Since driving ability
includes visual-spatial and operational attention, among others, head pose estimation of the driver is a crucial indicator
of driving performance. This paper proposes a new automatic method for coarse and fine head’s yaw angle estimation
of the driver. We rely on a set of geometric features computed from just three representative facial keypoints, namely
the center of the eyes and the nose tip. With these geometric features, our method combines two manifold embedding
methods and a linear regression one. In addition, the method has a confidence mechanism to decide if the classification
of a sample is not reliable. The approach has been tested using the CMU-PIE dataset and our own driver dataset.
Despite the very few facial keypoints required, the results are comparable to the state-of-the-art techniques. The low
computational cost of the method and its robustness makes feasible to integrate it in massive consume devices as a
real time application.
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1. Introduction

Driver fatigue/drowsiness and distraction are known
to be behind a large amount of traffic accidents. Accord-
ingly, different systems have been developed to detect
such situations [1, 2, 3, 4]. Distractions are specially
challenging because many times are difficult to predict
in advance since they may be due to sudden events in
the environment or in the cabin. Indeed, a more general
challenge including distractions is driving performance.
Evaluation of driving performance is of utmost impor-
tance in order to reduce road accident rate. Behavior
analysis while driving generally points out the abilities
of the driver, which include cognitive (attention, exec-
utive functions, and memory) and (visual-spatial) per-
ception skills, as well as, their fatigue levels or atten-
tion capability [5]. These abilities can be analyzed from
several points of view, either measuring non-visual fea-
tures like heart rate variability [6], or analyzing visual
features such as eye blinking behavior [7], gaze direc-
tion estimation [8] or analysis of motion of the hands
[9] or the feet [10]. In particular, head pose is a crucial
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indicator of driver’s field of view and his/her attention
focus [11] and, like most of the indicators named above,
it deserves further consideration.

Head pose estimation is a challenging problem in it-
self due to the variability introduced by factors such as
driver’s identity and expression, cabin and outdoor illu-
mination, etc. [12]. In fact, during the last decade there
has been an increasing interest in developing methods
to estimate head pose [13] for different applications
such as security and surveillance systems [14], meet-
ing rooms [15], intelligent wheelchair systems [16], and
driving monitoring [1, 17]. In the particular case of driv-
ing performance, when drivers are paying attention to
the road ahead, their facial direction is within approxi-
mately ±15◦ from the straight normal [18]. Thus, the
yaw angle of the driver could contribute to determine
if he/she perceives road elements such as traffic lights,
roundabouts, crosswalks and the attention he/she de-
votes. Accordingly, in this paper we focus on the com-
putation of such angle from still images. Such a method
can be very useful as part of a multi-cue system [19, 20]
for early detection of abnormal driving performance in
common situations. For example, if the driver does not
pay attention to the correct direction in a roundabout,
or if he/she attends in a crosswalk but does not see a
pedestrian crossing on, an Advanced Driver Assistance
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System (ADAS) combining driving monitoring and ex-
terior hazard assessment, can decide to elevate the warn-
ing level or even braking the car.

1.1. Related work and contribution
Murphy-Chutorian and Trivedi [13] divide head pose

estimation methods in 8 categories. Three of them are
regression methods, geometric methods and manifold
embedding ones.

Regression methods apply a regression model on a
training set in one or more directions (angles). The
regression model usually is a non-linear one, such as,
Support Vector Regressors [21], Sparse Bayesian Re-
gression [22] or Neural Networks [23]. One drawback
of these methods is that they take into account the whole
face image, so that its high dimensionality decreases
the efficiency. In some cases, the dimensionality can
be reduced, like when the face is well localized. Still,
this high dimensionality makes not clear if an specific
regression tool is capable of learning the proper curve
modeling the directions arch.

Geometric methods are an alternative to directly ex-
plode most influencing properties on human head pose
estimation, which are usually based on human percep-
tion. These features can be divided on two types, those
based on face appearance, such as, orientation informa-
tion of head images [24, 25], skin color histogram [26]
or facial contours [27], and those relying on a set of
(usually 5-6) local facial keypoints [28]. In the first
case, computational cost is still high, since they need
to analyze the whole face image. In the second case,
facial features detection needs to be highly precise and
accurate. To overcome the limitations of a single cate-
gory method, manifold embedding methods are usually
combined with them, gaining in accuracy [12, 29, 30].

In the same fashion, this paper combines the three
methods explained above to estimate the continuous an-
gle of head pose of a driver. Roughly, given an image
of the driver’s head, we rely on a small set of geometric
features computed from just three representative facial
keypoints, namely the center of the eyes and the nose
tip. Our method is based on a combination of subspace
projections, as Fisher’s Linear Discriminant (FLD) and
Principal Component Analysis (PCA), as well as mul-
tiple linear regression adjusted for each pose interval.
Figures 1 and 2 sketch the main steps of the method,
split in training the system and testing new samples. For
the training (Fig.1), from a set of samples, we extract the
facial keypoints to compute a geometric feature vector.
A projection of the samples on a FLD allows the sys-
tem to suppress some samples not useful to train. Then,
the new set of samples is projected on another subspace

Figure 1: Workflow of the system training

based on PCA and a multiple linear regression is com-
puted to estimate the regression parameters. When a
new sample is given (Fig.2), it is projected and then
classified on the FLD subspace and on the one based
on PCA. A combination of both classifications gives us
the final coarse yaw angle estimation while the regres-
sion parameters serve to compute the continuous yaw
angle. Besides, the method integrates a mechanism to
self-evaluate the likelihood of the generated hypothesis
and discard non likely poses by comparing the discrete
angle obtained from FLD and the continuous angle from
the regression.

The analysis of the results assessing the reliability
of the method shows that, although the very few facial
keypoints required, the approach has high accuracy and
precision, which makes it comparable to the methods
present in the literature. Besides, the computational cost
is as low as it can run in real time, making easy to in-
tegrate it in massive consume devices such as tablets or
mobiles and be part of a multi-cue system for driving
performance evaluation. As well, the robustness of the
method against noise in the facial keypoint detection is
proven.

The remains of the paper are organized as follows.
Section 2 describes the mathematical tools involved in
the driver’s yaw angle estimation. Section 3 describes
the detection of the facial keypoints and the geometric
features derived from them while section 4 presents the
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Figure 2: Workflow of the test step

workflow of the method. The experimental setting and
the measures used to assess the reliability of the method
are detailed in section 5. Results and their analysis, are
shown in section 6, while the method is compared with
the ones in the literature in section 7. Last section, 8, is
devoted to conclude the paper with some final remarks.

2. Mathematical Tools

In this section, we explain the mathematical tools
used along the method.

2.1. Subspace based methods
Statistical methods based on subspaces have been

broadly used in computer vision and related fields for
recognition and classification tasks due to their appeal-
ing capabilities and good practical behavior. Among the
most popular methods we find FLD and PCA.

FLD computes a linear transformation that mini-
mizes the scatter of the samples within each class, while
maximizing the scatter between classes. The main goal
of FLD is to find a projection matrix, W f ld , of the linear
subspace W that maximizes the Fisher’s criterion:

W f ld = arg max
W

|WT SBW|
|WT SW W|

(1)

where SB = ∑
c
j=1(x

j − x)(x j − x)T is the between-
classes scatter matrix and SW = ∑

c
j=1 ∑

m j
i=1(x

j
i −

x j)(x j
i − x j) is the within-class scatter matrix. c is the

number of classes, m j the number of samples of the jth
class and the total number of samples is M = ∑

c
j=1 m j.

x j
i is the ith sample of the jth class, x j is the mean vector

of the samples of the jth class, and x is the mean vector
of all the samples.

If SW is not singular, the Fisher’s criterion is maxi-
mum when the vectors in W f ld are the eigenvectors as-
sociated at the non-zero eigenvalues of (S−1

W SB). The
new vectors (projected samples) are linear combinations
of the original ones:

xi
f ld = WT

f ld xi i = 1, . . . ,M (2)

PCA is used for dimensionality reduction, compres-
sion and feature extraction, which preserves the maxi-
mum variability in the original sample space (vectors).
A high correlation of input vectors involves redundant
information. The PCA method reduces this redundancy
by uncorrelating these vectors. PCA seeks to maximize
the total scatter of the projected vectors by the following
criteria:

Wpca = arg max
‖w‖=1

|WT ST W| (3)

where ST = ∑
M
i=1(xi − x)(xi − x)T is the total scatter

matrix. Wpca ∈ Rd×r is a matrix with r orthogonal
columns, r < d.

The above criteria is maximum if the column vectors
that form Wpca are the r first eigenvectors associated
to the r first eigenvalues of ST , ordered by descending
value.

The new vectors (transformed samples) are linear
combinations of the original ones and are constructed
in the order of importance given by the total scatter of
the vectors, as:

xi
pca = WT

pca xi i = 1, . . . ,M (4)

2.2. Regression methods
Regression models describe the relationship between

a dependent variable, Y , and one or more independent
(explanatory) variables. In the particular case of multi-
ple linear regression, the general model can be written
as follows:

Y = Xβ+ε (5)

which is equivalent to: y1
...

yn

=

 1 x11 · · · x1d
...

...
. . .

...
1 xn1 · · · xnd


 β0

...
βd

+

 ε1
...

εn


and

yi = β0 +β1xi1 +β2xi2 + . . .+βdxid + εi
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is the ith response, i = 1, . . . ,n, βk is the kth regression
coefficient, k = 1, . . . ,d, xik is the ith observation on the
independent variable xk, and εi is the ith noise term,
which models the random error.

The regression parameters can be estimated as:

β = (XT X)−1 XT Y (6)

3. Features

The facial keypoints we use are the left eye center
(LE), right eye center (RE), and nose tip (N) as shown
in Fig.3(a). These keypoints are enough to calculate
10 geometric features consisting of Euclidean distances,
ratios, differences and angles. Figure 3(b)-(d) shows the

Figure 3: (a) Facial keypoint set used for head pose estimation. (b)-(d)
Features directly computed using RE, LE and N facial keypoints, (b)
right view, (c) frontal view and (d) left view.

features that can be directly extracted from RE, LE and
N detection in the three different views, right, frontal
and left. Let x = [d(RE, N), θE, θRE, θLE, r(dE, θE),
r(θE, θRE), r(θE, θLE), r(θRE, θLE), r(dRE, dRL,
θE), s(θLE, θLR)]T ∈ R10 be a 10-dimensional vector
with the geometric features described in Table 1.

4. Head Pose Estimation

The method presented in this paper for estimating
head yaw angle is split in two main steps, one for train-

ing the system and another one for computing the angle
of the head in a new image.

4.1. Model Training
Let X = (x1, . . . ,xM) ∈ Rd×M be a matrix of M d-

dimensional vectors (samples) with the geometric fea-
tures proposed above, partitioned according to c possi-
ble classes associated to c discrete yaw angles of the
head. That is:

X = (x1
1, . . . ,x

1
m1
, . . . ,xc

1, . . . ,x
c
mc) ∈ Rd×M

Briefly, our method proceeds as follows. The sam-
ples are projected into a subspace easier to classify by
means of FLD and, there, uncertain samples are re-
moved by k-NN. Afterwards, dimensionality reduction
is performed by PCA. The resulting subspace is further
aligned (rotated) and a new dimension is generated in
the transformed subspace. Finally, the piecewise mul-
tiple linear regressors that output yaw angles are com-
puted given the transformed (FLD-PCA-Rotated) geo-
metric features. The details are described below and
Figure 4 shows the main space transformations and pro-
jections.

First, the geometric feature vectors of the training set
are transformed into a FLD subspace following equation
(1) for finding the projection matrix, W f ld :

X f ld = WT
f ldX ∈ Rd×(c−1)

The transformed vectors keep their class label, but this
allows us to remove uncertain transformed ones. In par-
ticular, for each transformed vector we apply a k-NN
classifier, and if the classification result does not match
its class label we consider it as uncertain and, thus, it is
no used for the rest of the process. Figure 4(a) shows
the first two dimensions of our sample set in the FLD
subspace, partitioned in 5 classes. Uncertain samples
(outliers) are marked in green.

The resulting matrix, X f = (x1, . . . ,xM f ) ∈ Rd×M f ,
M f ≤M, is then transformed into its PCA subspace, fol-
lowing equation (4):

Xpca = WT
pcaX f ∈ Rr×M f

where r is the new dimension of the reduced subspace
so that r 6 d. In order to keep the 90% of the cumulative
energy, we experimentally found that only the two first
components are needed. Therefore, from now on we can
assume r = 2.

In order to distribute the samples as symmetrical as
possible with respect to the second principal compo-
nent, and orthogonal to the first one, the samples in Xpca
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Table 1: Description of geometric features
Geometric Feature Description
d(RE, N) normalized distance between RE and N
θE angle between RE, LE and N
θRE angle between RE and the vertical axis from N
θLE angle between LE and the vertical axis from N
r(a1, a2) ratio between values a1 and a2
s(θLE, θLR) the result of subtracting θLE to θLR
dE Euclidean distance between RE and LE
r(dRE, dRL, θE) (1 - dRE/dRL) + θE
dRE normalized distance between RE and N
dLE normalized distance between LE and N

are rotated an angle α from the first principal compo-
nent. Thus, α is calculated from the arctan (in degrees)
of the slope of the line joining the center of the clus-
ters that are farthest away. That is, if C1 = (pc1,1, pc1,2)
and C2 = (pc2,1, pc2,2) are the centroids of two clusters
containing the samples that are farthest away, α is:

α = arctan
(

pc2,2− pc2,1

pc1,2− pc1,1

)
(7)

Those clusters are computed using a Fuzzy C-means
clustering [31] into the PCA subspace. In this way the
rotated samples are:

Xpcaα
= Rα Xpca (8)

=

(
cos(α) −sin(α)
sin(α) cos(α)

)
Xpca

where Rα is the rotation matrix. Figure 4(b) shows the
samples transformed in the PCA subspace before rotat-
ing them. As well, the centroids of the two clusters that
are farthest away are marked in green and the slope of
the line joining them shows the angle α to rotate the
samples.

The new feature representation lie on a nonlinear
manifold in a 2-dimensional subspace that are still a bit
superposed. Thus, in order to discriminate the samples
and obtain a better feature representation, a new dimen-
sion is generated and added to the Xpcaα

plane.
This discriminative dimension is computed by means

of a nonlinear function with the same sign of the first
component (that is, positive when X(1)

pcaα
> 0 and nega-

tive when X(1)
pcaα

< 0). In particular, the function chosen
is the four-quadrant inverse tangent atan2(y,x), which
computes the angle between the positive x-axis of a
plane and the point given by the coordinates (x,y). This
function is positive for the upper half-plane, y > 0, and
negative for the lower half-plane, y < 0. Unlike the sin-
gle arctan function, it returns the appropriate quadrant

of the computed angle. Then, the new dimension for
each sample is computed as:

fi = atan2(Xpcaα
(1, i),Xpcaα

(2, i)) (9)

and F = (f1, . . . , fM f ) ∈ RM f . So the new representation
of samples is:

X′ =
(

Xpcaα

F

)
∈ R3×M f

Figure 4(c) shows the samples set in the new represen-
tation space. A hyperplane is adjusted for each class
following the linear regression model explained in sub-
section 2.2 and, accordingly to equation (6), regression
parameters are estimated for each class, obtaining the
following matrix:

B = (β, . . . ,βc) ∈ R3×c (10)

In this case, we force that the independent term for
each class be the own angle of the class.

The result of all this training process is the following:
a W f ld projection matrix on FLD subspace, a Wpca pro-
jection matrix on PCA subspace, a Rα rotation matrix
for the two principal components, a new samples set X′

and the regression coefficients B. The steps of the whole
process are shown in Algorithm 1, where the input of the
algorithm is the set of training samples X ∈R10×M with
their corresponding discrete angle Φ ∈ RM .

4.2. Test process

In the test process, the head pose of new samples is
classified, and the yaw angle is estimated as well. Fol-
lowing the work flow shown in figure 2, firstly the ge-
ometric feature vector, y ∈ Rd , is computed. The label
of the test sample is predicted as a coarse head pose by
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(a) (b) (c)

Figure 4: (a) First two dimensions of the geometric feature vectors into the FLD subspace. (b) Non-uncertain samples in the PCA subspace,
centroids of the two clusters that are farthest away (green mark), and α rotation angle. (c) Final samples used in the regression.

Algorithm 1 Model Training
Input: X ∈ Rd×M , Φ ∈ RM .
Output: W f ld ∈ Rd×(c−1), Wpca ∈ Rd×2, Rα ∈ R2×2,
B = (β, . . . ,βc) ∈ R3×c.

1: Transform the space containing the original sample set X
into a FLD subspace, obtaining the projection mapping
W f ld ∈ Rd×(c−1) and the transformed sample set
X f ld = WT

f ld X.
2: Remove outliers into the FLD subspace by means of k-NN

to obtain X f ∈ Rd×M f , M f ≤M.
3: Transform the space containing the reduced sample set X f

into a PCA subspace, obtaining the projection mapping
Wpca ∈ Rd×2 and the transformed sample set
Xpca = WT

pca X f .
4: Find the centroids C1 = (pc1,1, pc1,2) and C2 =

(pc2,1, pc2,2) (using a Fuzzy C-means clustering) of the
samples that are farthest away into Xpca .

5: Calculate the rotation angle, α , from the arctan in de-
grees of the slope of the line joining the centroids, α =
arctan(pc2,2− pc2,1/pc1,2− pc1,1)

6: Rotate the transformed samples Xpca,

Xpcaα
= Rα Xpca =

(
cos(α) −sin(α)
sin(α) cos(α)

)
Xpca

7: Generate the transformed training set,

X′ =
(

Xpcaα

F

)
∈ R3×M f

where F = (f1, . . . , fM f ) ∈ RM f and
fi = atan2(Xpcaα

(1, i),Xpcaα
(2, i)).

8: For each class, compute the regression coefficients by
Eq.(6) to obtain B = (β, . . . ,βc) ∈ R3×c .

9: Return W f ld , Wpca, Rα , B

means of the combination of two probabilities of be-
longing to a class, the one obtained after projecting the
vector on the FLD subspace and the one obtained after
projecting it on the rotated and extended PCA subspace.

That is, on the one hand, the feature vector y is pro-
jected on the FLD subspace,

y f ld = WT
f ld y

Using a k-NN classifier, the probabilities that y f ld be-
longs to each class c are computed, and their maximum
is chosen:

m1 = max
c
(P(y f ld ∈ c))

The class label corresponding to m1 is denoted as l1.
On the other hand, the feature vector y is projected on

the regression space in two steps. First, it is projected
on the rotated PCA

ypcaα
= Rα WT

pcay

Second, as in the training process, a third coordinate is
added to ypcaα

:

fy = atan2( ypcaα
(1,1), ypcaα

(2,1))

and the 3D point in the regression space is

y′ =
(

ypcaα

fy

)
The maximum of the probabilities that y′ belongs to

each class c is computed by means of k-NN:

m2 = max
c
(P(y′ ∈ c))

and a new label, l2, is obtained.
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Finally, both labels, l1 and l2, are compared and the
discrete angle, ϕd is computed. If l1 and l2 do not coin-
cide, the most likely class among both cases decides the
classification. If both classifiers assign the same prob-
ability to the sample but for two different classes, the
sample is labeled as uncertain. The result can be sum-
marized as:

ϕd =


ϕ(l1), l1 = l2
ϕ(l1), l1 6= l2,m1 > m2
ϕ(l2), l1 6= l2,m1 < m2
uncertain, otherwise.

(11)

where ϕ(li), i = 1,2 is the angle assigned to the jth cho-
sen class from li.

The estimation of the continuous head’s angle is com-
puted by means of the regression coefficients of the jth
class to which the sample belongs to:

ϕcont = (βj)T y′ (12)

Algorithm 2 shows the steps to follow in the test
phase, where the input is a test sample, y ∈ Rd , and the
outputs, the corresponding discrete and continuous an-
gles, ϕd and ϕcont , respectively.

Algorithm 2 Yaw computation of test samples
Input: y ∈ Rd .
Given: W f ld , Wpca, Rα , B
Output: ϕd , ϕcont

1: Project y into the FLD subspace, y f ld = WT
f ld y.

2: Calculate the maximum of the probabilities of belonging
to each class in the FLD subspace:

m1 = max
c

(P(y f ld ∈ c))

and associate it to the corresponding class label l1.
3: Project y into the rotated PCA subspace,

ypcaα
= Rα WT

pcay.

4: Generate the new 3D point as y′ =
(

ypcaα

fy

)
,

fy = atan2( ypcaα
(1,1), ypcaα

(2,1)).
5: Calculate the maximum of the probabilities of belonging

to each class in the regressed space:

m2 = max
c

(P(y′ ∈ c))

and associate it to the corresponding class label l2.
6: Compute the discrete angle ϕd by (11).
7: Calculate the continuous angle ϕcont by (12).
8: Return ϕd and ϕcont

5. Validation protocol

Our method has been tested on two sets of data,
one based on images from a controlled scenario and
the other based on images acquired while driving1. For
the first dataset, we have considered the CMU-Pose, Il-
lumination and Expression database [32], which con-
tains 13 images of 68 persons that present head pose
changes in the horizontal axis of [−135◦ : 22.5◦ : 135◦]
for a total of 884 images of 640× 480 pixels each. In
our particular case, since the final application only re-
quires poses within the angular area useful to drive,
we only take into account 5 poses with the angles
[−45◦ −22.5◦ 0◦ 22.5◦ 45◦], for a total of 340 images.
Figure 5 illustrates the database by showing the images
used for one of the subjects.

As second dataset, we have used our own one ac-
quired while driving in real scenarios. It is composed
of 606 samples of 640× 480 pixels each, acquired in
different days from 4 drivers (2 women and 2 men) with
several facial features like glasses and beard, classified
in 3 possible classes [18, 33]. The first class is the
”looking-right” class and contains the head angles be-
tween −45◦ and −30◦. The second one is the ”frontal”
class and contains the head angles between −15◦ and
15◦. The last one is the ”looking-left” class and con-
tains the head angles between 30◦ and 45◦. Figure 6
shows a driver of our dataset.

The experiments carried on to evaluate the validity of
our feature set and our overall head’s yaw angle estima-
tion explore two aspects of the method: its reliability
and its robustness against facial keypoint detection.

The reliability of the method is assessed by means
of the absolute error for the continuous head pose esti-
mation and the accuracy for the coarse one. Since we
aim at evaluating our yaw estimation method indepen-
dently of the procedure for detecting the required key-
points, we run the experiments using manual ground
truth and using an automatic detection based on deep
convolutional network cascade [34]. This method cas-
cades three convolutional networks to make coarse-to-
fine prediction. In the first level they use three indi-
vidual networks to detect the whole face, eyes and nose,
and nose and mouth. In the second and third levels, they
refine the prediction by taking local patches centered at
the previous predicted positions. It is worth to men-
tion that this method is an external detector off-the-shelf
and can effectively predict and locate our keypoints with

1The driver’s database is available in http://adas.cvc.uab.

es/site/index.php/datasets/
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Figure 5: Images of CMU-PIE dataset for a subject with a head yaw angle of −45◦, −22.5◦, 0◦, 22.5◦, and 45◦.

Figure 6: Images of a driver from our own database.

high accuracy, even when low-level features from local
regions are ambiguous or corrupted.

The Absolute Error (AE) between the continuous an-
gle estimated by our approach, ϕcont , and the discrete
angle from the ground truth, ϕ , is computed as:

AE = ‖ϕcont −ϕ‖

The Accuracy (Acc) of the coarse head pose estima-
tion is computed on both datasets as:

Acc =
T P
N

where N is the total number of test samples and T P the
number of samples correctly classified.

Besides, in order to visualize the reliability of the
method and the classes of missclassified samples
the confusion matrix between ground truth and the
estimated angle is computed for both datasets.

Figure 7: Principal directions along where we have added noise to
each facial keypoint

The robustness of the method is assessed by means
of the reliability of the method with added Gaussian

noise to the facial keypoint detection. That is, we have
moved each facial keypoint, independently of the oth-
ers, along eight principal directions [0◦:45◦:315◦] as
Figure 7 shows, up to 20 pixels and we have computed
the accuracy of the method. It is worth to note that the
added noise is independent from the head image size,
but it implicitly includes noise in the 10-dimension fea-
ture vector, since the computed geometric features are
normalized.

6. Experimental Results

The system has been trained and evaluated with those
samples where facial keypoints were detected, which
represents a 98.81% of the total samples. This sample
set has been randomly divided in two groups, one for
training with 70% of samples and the remaining 30%
for testing. The training set consists of 47 samples for
classes at −45◦, 0◦, 22.5◦, 45◦, and 46 samples for the
class at −22.5◦. The test set consists of 20 samples for
classes at −45◦ and 0◦, and 19 samples for classes at
−22.5◦, 22.5◦, and 45◦. Since the results of the evalu-
ation may be significantly different depending on how
the division of the set is made [35], to reduce variabil-
ity and average over different sources of randomness we
repeat the process ten times for different random parti-
tions and report the ranges (mean± std) of the measures
explained in the above section. The k-NN classifier uses
k = 3 nearest neighbors and the Euclidean distance.

Table 2 shows the Absolute Error rates, in degrees,
for the continuous yaw angle estimation reliability with
manual (left) and automatic (right) detection. No-
tice that the standard deviation is below 1.64◦ in all
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cases, indicating that the method is stable among all the
classes.

Table 2: Absolute Error rates using manual and automatic detection

Angle Manual Automatic
−45◦ 4.63 ± 0.80 3.68 ± 1.12
−22.5◦ 4.35 ± 1.27 4.28 ± 1.44

0◦ 2.70 ± 1.64 2.63 ± 1.39
22.5◦ 4.14 ± 1.22 3.66 ± 1.06

45◦ 2.02 ± 0.97 2.28 ± 1.11
Global 3.57± 1.56 3.31 ±1.40

Boxplots in Figure 8 show a general view of the ac-
curacy rate (in percentage) of our approach for discrete
yaw angles estimation for each class, while Table 3
summarizes this accuracy. Both results are shown with
manual and automatic detection of the facial keypoints.
A global average accuracy over 92% with a standard de-
viation around 6% makes our method comparable to the
state-of-the-art techniques. As before, accuracy does
not substantially differ among classes.

Figure 8: Accuracy boxplots for discrete angles estimation with man-
ual (top) and automatic (bottom) facial keypoint detections.

In order to deepen on the error font, Figure 9 shows
the confusion matrix between ground truth and esti-
mated poses for the worst performance iteration. As
well, to be able to compare our method with others, the
classification results for the best performance iteration

Table 3: Accuracy rates using manual and automatic detection

Angle Manual Automatic
−45◦ 90.53 ± 6.06 90.41 ± 5.72
−22.5◦ 91.98 ± 6.05 92.09 ± 7.74

0◦ 91.69 ± 6.72 91.67 ± 5.71
22.5◦ 91.30 ± 5.93 93.14 ± 4.43

45◦ 97.71 ± 2.97 95.61 ± 5.10
Global 92.64 ± 6.05 92.58 ± 5.87

are summarized in the confusion matrix shown in Fig-
ure 10 and the summary for the real dataset is shown in
Figure 11. Again, all the results are reported for man-
ual (top plots) and automatic (bottom plots) detection of
the facial keypoints. Note that the number of samples
appearing in the confusion matrices are different since
there are some uncertain samples per class, which may
vary across the iterations and processes. The ranges of
the number of samples in which both methods do not
agree for each class and all the iterations are summa-
rized in Table 4.

We can observe that all the misclassified samples
are correlated to the first nearest neighbor, which could
mean that the classes are not totally separated but there
can be problems only in the border areas of each class.
As well, samples labeled with a positive angle are not
assigned to a negative one, which means that our geo-
metric features and methodology used are robust. Still,
the accuracy is above 81% for all classes in the worst
performance iteration and reaches a 100% in all but one
class for the best one, both in the controlled scenario
and the driving dataset.

Table 4: Samples labeled as uncertain for each class and all iterations
Angle Manual Automatic
−45◦ 1.40 ± 1.78 1.40 ± 1.17
−22.5◦ 2.00 ± 1.70 1.40 ± 0.70

0◦ 1.90 ± 1.20 0.80 ± 1.14
22.5◦ 3.40 ± 1.51 1.60 ± 1.78
45◦ 1.00 ± 0.82 0.60 ± 0.70

Regarding the comparison between manual and au-
tomatic detection, a Student’s t-test is performed for
finding significative differences with the null hypothe-
sis that both methods have equal means. The test can-
not reject the null hypothesis at a significant level of 5%,
with the p-value p = 0.95 and the confidence interval is
(−2.69,2.87), so that we can ensure that both methods
perform equally.
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Figure 9: Confusion matrix for CMU-PIE dataset with manual (top)
and automatic (down) facial keypoint detection for the worst iteration.

Finally, it is worth to note that the elapsed time
for performing the angle is approximately 2ms on a
2.67GHz Intel(R) Xeon(R) CPU and a non-optimized
MatLab code. Thus, it is a negligible time compared to
image acquisition and eyes and nose detection.

Figure 12 illustrates the robustness of the method.
Each plot corresponds to the average accuracy of the
method by adding noise to the detection. The top plot
corresponds to the right eye, the middle one to the left
eye and the bottom one to the nose. The legend of the
principal directions, which are shown in Figure 7, are
depicted in the bottom of the figure. The distances range
in the x-axis is [1,20] pixels.

Notice that plots show that up to 2 pixel noise do not
affect the accuracy of the method, which keeps above
the 80% until 4 pixel error in all cases.

7. Comparison to existing methods

In order to compare our method with the current state
of the art, Table 5 summarizes the results obtained by
the methods in the literature that use CMU-PIE. For

Figure 10: Confusion matrix for CMU-PIE dataset with manual (top)
and automatic (down) facial keypoint detection for the best perfor-
mance iteration.

each method, we report the accuracy rate (Acc), the
number of iterations they run the experiments (Iter.),
its application to continuous environments (ϕcont ) and
if the method is fully automatic or not (Aut.). In case
the experiments of a method have been run more than
once, we report the mean and the standard deviation as
long as they are reported in the corresponding paper.
The number of classes considered in the literature are
generally 9, within the range from [−90◦,90◦], although
in [36] the authors consider 5 classes, within the range
[−45◦,45◦]. In both cases the increments are given by
the dataset, which is 22.5◦.

First of all, it is worth to note that accuracy rates are
not totally comparable. Most of the methods [12, 24,
37, 38] use a hold-out procedure but they execute the
experiments once and, thus, the evaluation may be sig-
nificantly different depending on which data points are
in the training set and which are in the test set. In case
they use a k-fold cross-validation [36, 39], they do not
report any standard deviation, so we cannot know the
dispersion of the data in relation to the average. For
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Figure 11: Confusion matrix for our dataset with manual (top) and
automatic (down) facial keypoint detection for the best performance
iteration.

Table 5: Comparison to the-state-of-the-art methods that use CMU-
PIE dataset

Method Acc (%) Iter. ϕcont Aut.
Brown [37] 91.00 1 × ×
Ba [24] 94.80 1 X -
Saquib [38] 84.06 1 × ×
Hu [12] 98.70 1 × ×
Dong [39] 96.02 ± - 4 × X
Dahmane [36] 82.26 ± - 6 X X
Ours 92.58 ± 5.87 10 X X

example, the accuracy rate for our worst performance
iteration in the automatic case is 90.53%, while the best
performance iteration is 98.85%, which would be the
best result in Table 5.

Brown et al. [37] present a comparative study be-
tween two coarse pose estimation schemes, a neural net-
work approach and a probabilistic model. Although in

Figure 12: Accuracy of the method according to the distance of facial
keypoint detections to the real one

both cases the best performance is 91% the main dis-
advantages of these approaches are: 1) the performance
and the complexity of the system depend on the image
resolution and the head localization error; 2) it is not an
automatic process, since the head bounding box is ex-
tracted semiautomatically; 3) the head pose estimation
is discrete.

Ba et al. [24] present a probabilistic framework for
joint head tracking and pose estimation by incorporat-
ing head pose estimated by means of a Naive Bayesian
classifier into a mixed-state particle filter framework.
Although the global accuracy is 94.80%, head tracking
requires a good initialization and head pose estimation
needs to learn the same number of Gaussian Mixture
Models as poses it has. As well, the framework has
high computational complexity due to the combination
of both methods in a particle filter framework.

Saquib et al. [38] process full facial images using lo-
cal energy based shape histogram as feature space. This
approach drops its accuracy to 84.06%. The confusion
matrix of their results shows that some missclassifica-
tions are not correlated to the first nearest neighbor but
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to the second and third nearest neighbor. For example,
the samples of the class 0◦ are misclassified as ±22.5◦,
±45◦ and −67.5◦, proving that the feature space gen-
erated is not robust enough to discriminate among the
different poses.

The approach presented by Hu et al. [12] is based
on the Lie Algebrized Gaussians feature as a subspace
where the within-class covariance normalization based
Support Vector Machine (SVM) is used as classifier. Al-
though it has a global accuracy of 98.7%, this semiau-
tomatically approach needs to crop the faces with an
empirical value of head size that depends on the im-
age characteristics. As well, there are too many pa-
rameters that need to be tuned and decided, which are
important for a proper head pose estimation. These in-
clude the number of Gaussian components, the type of
kernel for dimensionality reduction and its parameters,
among others, so the complexity and storage cost is in-
creased and the probability of overfitting to a particular
scenario is high. Finally, the confusion matrix of their
results shows that the method cannot present continuous
poses characterization since some poses that belong to
the classes at 0◦ and 45◦ are misclassified. In the case of
class at 0◦ there are poses classified as −67.5◦ and 90◦,
while in the case of class 45◦ there are poses at −45◦.

Dong et al. [39] propose two image representations
to describe head pose variations and they combine them
in two linear subspace methods and classify the pose by
means of the nearest centroid of the classes. The best
combination (HOG+LDA) achieves a 96.02% of aver-
age accuracy, with 99% of the subspace energy. The
performance of this approach is seriously affected by
the dimension reduction: the greater the reduction is
(not less than 55% of energy), the worse the classifi-
cation results (≈ 87%). Although the final projection
dimension is c− 1, the dimension of the original space
is 32×32, while the dimension of the space we propose
is 10, which we reduce until 2 dimensions. In addition,
this approach is limited to discrete environments.

Dahmane et al. [36] use a decision tree as classifi-
cation system. The images of the faces are obtained
automatically and processed to extract symmetrical ar-
eas and their corresponding features. The best result
reported is a global average accuracy of 82.26%.

In contrast to these methods, we present an automatic
real time approach to estimate both coarse and continu-
ous yaw angle. The exhaustive validation of the method
shows its high accuracy and precision as well as its ro-
bustness against noise in the facial keypoint detection,
independently of the image resolution and the head lo-
calization error, as well as its application in real time.

8. Discussion and Conclusions

In this paper, we have introduced a new methodology
for driver coarse and fine head’s yaw angle estimation
by using a feature set generated from a reduced set of
facial keypoints. The approach is based on a combina-
tion of subspace methods, as PCA and FLD, and multi-
ple linear regression. As well, it integrates a mechanism
to self-evaluate the likelihood of the generated hypothe-
sis and discard uncertain poses by comparing pose label
from FLD and PCA.

The reliability of the method has been assessed in
two different datasets, a controlled scenario (CMU-PIE)
and in real driving (our own database). The global
average accuracy for CMU-PIE dataset shows that the
method performs like other state-of-the-art strategies.
The best performance of our method reaches an accu-
racy of 100% for manual detection of facial keypoints
and a 98.85% for automatic one. In the case of the driv-
ing dataset, a continuous angle is computed with an ab-
solute average error below 5.13◦. As well, for the coarse
estimation, the misclassified samples keep a high corre-
lation (first near neighbor) with the real angle.

Thus, we can conclude that 3 facial keypoints, corre-
sponding to the center of both eyes and the nose tip, are
enough to extract 10 geometric features based on angles
and Euclidean distances and obtain accurate and precise
results for both coarse and fine head pose estimation.
This is probably due to the fact that nose tip and eyes
are fixed parts of the face so that their degrees of free-
dom are closely linked to the same degrees of freedom
as the face. In this case, adding more facial keypoints,
like the edges of the mouth could add more angles and
distances that might be redundant or even hinder a re-
liable angle, since the degrees of freedom of the mouth
are independent from driver’s face. Indeed, mouth state
information could serve to detect driver fatigue [4], but
only the edges might not be enough to report a robust
state of the mouth and detect events like yawning.

Besides, our method has proven its robustness, main-
taining a high accuracy in noisy detections up to 4 pix-
els for all directions. Several factors such illumination
changes can hinder this robustness, misleading proper
outputs in some frames. In order to avoid that errors
and other induced from the acquisition devices, it would
be interesting to explore the improvements of adding
some kind of temporal continuity. However, this tem-
poral continuity could be incompatible with the detec-
tion of abrupt changes corresponding to drivers behav-
ior abnormalities or distractions. Consequently, to de-
tect abnormal driving performance, abrupt changes of
drivers head pose should be carefully modeled and dis-
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tinguished from those actions implying a short and fast
movement of the head. For that aim, the gradient of the
head motion would be interesting to incorporate in the
model, although it requires a further analysis.

Finally, the low computational cost of the overall
method allows it to be integrated in a tablet or mobile
for a real time application, which will be done in mid
term.
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