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Cost estimation of custom hoses from STL files and CAD drawings
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A B S T R A C T

We present a method for the cost estimation of custom hoses from CAD models. They can come in two

formats, which are easy to generate: a STL file or the image of a CAD drawing showing several orthogonal

projections. The challenges in either cases are, first, to obtain from them a high level 3D description of the

shape, and second, to learn a regression function for the prediction of the manufacturing time, based on

geometric features of the reconstructed shape. The chosen description is the 3D line along the medial

axis of the tube and the diameter of the circular sections along it. In order to extract it from STL files, we

have adapted RANSAC, a robust parametric fitting algorithm. As for CAD drawing images, we propose a

new technique for 3D reconstruction from data entered on any number of orthogonal projections. The

regression function is a Gaussian process, which does not constrain the function to adopt any specific

form and is governed by just two parameters. We assess the accuracy of the manufacturing time

estimation by k-fold cross validation on 171 STL file models for which the time is provided by an expert.

The results show the feasibility of the method, whereby the relative error for 80% of the testing samples is

below 15%.

� 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Price estimation of parts from digital models like CAD files or
blueprints before their actual manufacture is a key task for many
companies. In today’s global competitive market, timely delivering
accurate quotations to potential clients may make the difference of
a company with respect to its competitors. This is even more
necessary for small and medium-size enterprises for which a large
share of their production consists in short series of custom parts.
This means that price has to be estimated accurately, fast and
frequently from part models provided by potential customers,
being parts always different in size, shape and materials.

The quotation process includes as its main component the
estimation of the unitary manufacturing cost, to which the profit
margin is added in order to get the final price. Cost estimation in
those companies is often performed by an expert on the basis of
his/her experience over the years. This has some drawbacks:
companies come to strongly depend on such qualified personnel,
experts spend a large amount of time generating quotations rather
than working on other important tasks [1], and their estimations
may have a subjective component. Finally, in the event of peaks in
the demand of bids, they act as involuntary bottlenecks of the
production process because customers can not directly obtain their
quotations by other means.
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1.1. Objective

This article deals with the problem of cost estimation for a
specific type of parts, namely custom hoses. They are used to
transport liquids and gases often at high temperature and pressure,
in a variety of sectors like automotive, nautical, chemical and
medical industries. Their changing shape and production in short
series explain why they are manually manufactured: a steel
forming tool is first made that is used for molding the hose into
shape by hand, wrapping a narrow band of some kind of textile
material like rubber or silicone, to be later melted in an oven.

The cost depends on the amount of material employed and also
on the manufacturing time. One may wonder whether the labor
time cost is significant with respect to the materials cost.
According to consultations we made to a leading company of this
sector, in developed countries it may account for more than 60% of
the total unitary cost, pushing this kind of industries into
offshoring. While the materials cost can be readily computed
from the part surface, labor time cost is much more difficult to
determine because it is related in an unknown way to the part size
and shape. Specifically, we only know from the expert that the
larger the part, the longer it takes to manufacture. Likewise, the
more bends and the higher their curvature, the longer it takes
because it is harder to uniformly wrap the covering material into
the mold.

Thus, the objective is to derive a procedure for the automatic
estimation of the surface and the manufacturing time from a CAD
model of a hose. The models may come in two formats, the easiest
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Fig. 1. 3D rendering of some STL models. Models have been rescaled for better visualization. The size of the working set of models ranges from 13 cm to 1.2 m long and 8 mm

to 20 cm of inner diameter. Note that section diameter may change along one same model, like in top-right and center.
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to generate and send electronically by a customer: stereolitho-
graphy files (STL) or an image of the CAD drawing showing
orthogonal projections. STL is a file format to describe the surface
geometry of an object and it is supported by most CAD software
packages. CAD designs can be printed and scanned, or simply saved
in some image format like TIFF, JPEG, etc. Fig. 1 shows a gallery of
tubes rendered from their STL models and Fig. 6a shows an image
of a scanned blueprint.

Furthermore, this procedure must be implemented as a
platform independent web application so that manufacturing
companies representatives and customers alike may get quota-
tions on-line from their web browsers without the hassle of
software installation, version updating and hardware dependency
problems.

As a final and minor goal, the system must be able to render
realistic orthogonal views of the model like that of Fig. 6b.
Generating them from the STL file is fairly easy. However, it is not
from CAD drawing images because it requires the reconstruction of
the 3D model from orthogonal views. Rendered model images are
to be included in the quotation document, to show the customers
that the part shape has been understood well and support the
quotation result.

1.2. Related work

In order to deal with the issues derived of cost estimation from
part models by an expert, several researchers have addressed its
automation, notably in the domains of rapid prototyping and
tooling, and machining manufacturing. Refs. [2,1] are nice and
through reviews of the works on these two fields, respectively. For
this reason, and because we address a different type of production,
we will only pay attention to the two aspects most related to our
work: the classification of cost estimation methods and web-based
quotation systems.

Automated cost estimation methods have been grouped into
the three following categories [3,1]:
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� Analogy. The values of part attributes related with, for example,
shape, size and material characteristics, have been previously
stored in a database along with their actual cost. When a new
part description arrives, the most similar part in the database is
retrieved and its registered cost is somehow adapted to produce
the estimation for the new part. The success of this approach
relies on the proper selection of the part attributes, the similarity
measure, the database size and a balanced distribution of shapes
within it. Two representative examples are [4,5].
� Analytic. The part and/or the manufacturing process is divided

into components or simpler subtasks so that for each one it is
possible to calculate the cost deterministically. Later, all costs are
aggregated.
� Parametric. Like in analogy, a set of part attributes is previously

selected because they are considered to be highly related to the
cost. For instance, volume, area, surface curvature or type of
finishing. But instead of trying to retrieve the most similar part in
a database, they are used to directly estimate the cost through
regression analysis. This kind of methods draw from statistical
regression and machine learning techniques [17].

With regard the adoption of the analogy approach for our
problem, we have found impossible to define a good similarity
measure, given the variety of shapes and sizes. Another reason is
that fairly globally similar shapes may have associated quite
different times because it seems to also depend on local shape
characteristics like surface curvature. A third obstacle is that it is
not clear at all how to adapt the time of the most similar part to the
present object. Analytic methods are better suited to manufactur-
ing processes which can be decomposed in distinct, cost-
quantifiable tasks, which is not the case. The parametric approach,
instead, has shown to fit well to our problem: we have been able to
select both global and local features and learn a regression function
from a training set of samples which accurately estimates the
manufacturing time.

There are web applications for cost estimation from STL models.
One is QuickParts, which can be found in [15] although no
description on how it works is provided, beyond that it performs
some kind of geometric analysis. Conversely, Lan et al. [16] detail a
web-based automated quotation system which can provide instant
price quotations. However, both works are specific of rapid
prototyping and machining parts.

1.3. Contribution and system overview

In the following sections we will describe the most important
components of the cost estimation system we have built for
customized hoses. Two of them have in common the goal of
extracting one same 3D high-level and complete description of the
part to quote: the 3D curve of the tube medial axis and the
diameter of section at each point along it. They will allow to
compute the surface — and thus the materials cost—, and also the
value for attributes to be subsequently used for time regression
analysis, namely, medial axis length, curvature and diameter
mode. The first component obtains the medial axis from an STL file
(Section 2), which contains an unsorted list of triangles covering
the part surface, specified by their vertices and normal in 3D space.
Therefore, it is far from trivial to get the central axis curve. The
second component does the same but from an image of the CAD
drawing showing three orthogonal views. We have devised a semi-
automated algorithm for the 3D reconstruction of the model which
works with one or more orthogonal projections in a CAD drawing
image (Section 3).

The third main component is the time regression. We are given
a large number of samples consisting of STL files plus their time as
estimated by a human expert. From this training set, we extract the
value of a few relevant features related to the part size and shape in
order to learn a Gaussian process. We can then estimate the cost
from the features for new parts (Section 4). In Section 5 we assess
the accuracy of the cost regression by means of a well known
testing methodology in machine learning, k-fold cross validation,
and justify the choice of the only two Gaussian process
hyperparameters, the scale and the data noise variance.

We apply these techniques to the specific problem of hose
quotation. However, we believe they are useful in a broader sense.
The algorithm for medial axis extraction is applicable to any
tubular shape described by points on its circular sections, and the
same can be said of the 3D reconstruction. Regression through a
Gaussian process from geometric features can be applied to other
shapes for cost estimation also, avoiding the need to study each
subtask like in the analytic approach. It has the advantages of being
an almost-free parameter regression method, not assuming any
specific class for the regression function, and its few parameters
(two, in the simplest setting) can be easily tuned to the available
data.

2. Medial axis extraction from STL models

The STL file format describes the approximate shape of an
object in a very simple way: an unsorted list of triangles whose
mesh covers the surface, each specified by its three vertices and
unitary normal vector. We aim at obtaining a high-level shape
description, namely, the medial axis defined as an ordered list of
circular section centers and their corresponding diameters (Fig. 2),
from one of the tube ends to the other.

The medial axis line, also called curve-skeleton in the
literature, is a concise representation of 3D shapes that has
attracted much attention because of its applications to shape
compression, retrieval, visualization and animation. We refer the
reader to the excellent survey [6] which reviews and categorizes
many methods according to several properties. Relevant here is
the class of geometric methods, those accepting as input
polygonal meshes. They work directly on the mesh domain
without having to sample the model in order to produce a (maybe
huge) binary volumetric or voxel-based representation, like in [7].
Among them, a successful approach consists on making the
vertices or patches to iteratively evolve or collapse from the shape
boundary into the shape centerline [8–10]. They are effective but
complex methods because they intend to work with generic
closed shapes. In our case, however, we can take advantage of a
strong constraint: our shapes are tubes, that is, a succession of
circular sections orthogonal to the medial axis possibly with
varying radius. This has allowed us to come up with a specialized
but much simpler algorithm.

We decompose the problem in two parts: finding circular
sections and then sorting their centers to form a smooth polyline
curve (a list of straight segments) in space. For the first, we have
adapted RANSAC [18,19], a generic robust hypothesis generation
and verification method used to fit parametric shapes to data
which may contain a large proportion of outliers. For the sake of
completeness, we will summarize it. RANSAC is composed of two
steps:

1. Hypothesize: randomly select a minimum set of data samples so
as to fit the parametric model to them (i.e., find the parameters
values). In our case, three vertices suffice to define a circle in 3D
space.

2. Verification: select the data points close enough to the
instantiated model, which will form its consensus or support set.

They are repeated iteratively until the size of the support set
rises above a certain threshold. Then, the consensus set is



Fig. 2. Medial axis extraction. (a) STL input model, (b) extracted inner and outer circular sections, (c) medial axis and (d) variables of Algorithm 1.
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considered the inliers set and the model is fitted again to all of
them.

Our data are not samples of a single parametric model but of a
large number or 3D circles, and all or at least many of them, closely
spaced, have to be found in order to build the medial axis from
their centers. Trying all triplets of vertices for every circle is clearly
infeasible because even mid-size models have thousands of
vertices. Moreover, CAD models represent the hose thickness
and thus we have an inner and an outer tube surfaces, both covered
by the triangle mesh (Fig. 2a). It is absolutely necessary to prune
the number of triplets to try. We achieve it in two ways (Algorithm
1). The first is, for each vertex v, to select the two remaining
vertices u; w among the small set of vertices which are connected
with it in the mesh (in light grey in Fig. 2d). This boosts the
probability that each triplet forms an actual circular section. The
second is to remove from the set of vertices to choose from, those
that have already been found to belong to the support set of some
circle. These two simple strategies allow to find the circular
sections of meshes with tens of thousands of vertices in a matter of
seconds. Three additional constraints help to further filter out
infeasible triplets satisfying the two former conditions. They are
based on: (1) a minimum distance between the points in the
triplet, (2) the parallelism of their normals, and (3) the
orthogonality between the normal to the plane containing the
fitted circle, and each vertex normal (see Algorithm 2 and Fig. 2d).
The second part, sorting the sections, is solved as follows.
Consider the weighted undirected graph whose nodes are the
section centers, there is one edge between every pair of nodes (i.e.,
the graph is fully connected) and the edge weight is the distance
between the two nodes it connects. We would like to remove all
edges but those such that each section center remains linked to the
closest one in space, thus forming a chain of segments. It turns out
that the minimum spanning tree (MST) of such a graph does
provide this result. The MST of a graph is a connected subgraph
with no cycles that includes all the nodes and at the same time
minimizes the sum of weights of its edges. There are several
algorithms for the computation of the MST, like Kruskal’s or Prim’s,
which have a low complexity, on the order of E log E and E log N,
respectively, where E and N are the number of edges and nodes
[20].

Note that as a consequence of the double hose surface, the
circles diameter found in the first part can be either the inner of
outer section diameter (Fig. 2b). Once sorted the sections, a simple
local minimum filter on the list of diameters gets the inner
diameter for each section (Fig. 2c).

Algorithm 1. Medial axis from STL (part 1). Some constants below,
like maxDist and minSupport, depend on the density of vertices
specified in a CAD software when saving a model in STL format.



Fig. 3. Spatial arrangement of projections in a CAD drawing with xy central projection in the middle and matching of end points.
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function MedialAxisSTL(V, T, N)

input:
V list of vertices vi 2 R3

T list of triangles tj = (i1j, i2j, i3j), 1 � i1j, i2j, i3j � |V|

N list of triangles normals, n j 2 R3; jjn jjj ¼ 1; j ¼ 1 . . . jTj
output:

C sorted list of section centers ck 2 R3

D corresponding list of section diameters dk, k = 1 . . . |C|

for all v 2 V do
isSupportðvÞ   false

NVðvÞ   normal of first triangle found with vertex v
end for
k   0 " number of sections found

for all v 2 V do
if : isSupportðvÞ then

" v does not belong to any section already found

A  ADJACENTVERTICES(v)

" list of indices in V of vertices sharing an edge with v

for all (i, j), 1 � i < j � |A| do
u   V[i]

w   V ½ j�
If TRIPLETISFEASIBLE(u; v; w) then

c, d, n  FIT3DCIRCLE(u,v,w)

" c 3D center, d diameter, n normal to circle’s plane

if CIRCLEISFEASIBLE(d; n; v) then
S  ; " support for circle

for all v0 2 V do
if DISTTOCIRCLEðv0; c; r; nÞ < maxDist then

S   S [ v0

end if
end for
if |S| > minSupport then

k   k + 1

C[k]   c

D[k]   d

for all v0 2 S do
isSupportðv0Þ   true

end for
break " leave for all (i, j), stop looking for feasible triplets

end if
end if

end if
end for

end if
end for
for i   1 to k do

for j   1 to k do
dist[i, j]   || C[i] � C[j] ||
" adjacency matrix of fully connected graph of centers

end for
end for
distMST   MINIMUMSPANNINGTREE(dist)

" adjacency matrix of minimum spanning tree graph

C, D  TREETRAVERSAL(distMST, C, D)

return C, D

Algorithm 2. Medial axis from STL (part 2).
function TRIPLETISFEASIBLEðu; v; w)

input:
u; v; w three different vertices

output:
could they belong to one same circular section? (true,false)

nu  NV(u)

nv  NVðvÞ
nw  NVðwÞ
return minðjju � vjj; jju � wjj; jjv � wjjÞ > minDistance ^

minðjnu � nvj; jnu � nwj; jnv � nwjÞ > minParalelism

function CIRCLEISFEASIBLEðd; n; vÞ
input:

d, n circle diameter and plane normal

v vertex defining the circle

output:
is the circle an admissible circular section, consistent with v ?

return d> minDiameter ^ d < maxDiameter ^
jn � NVðvÞj < minOrtho

3. 3D reconstruction from CAD drawings

The second source of hose descriptions are images of CAD
drawings showing orthogonal views, like in Fig. 6a. Like STL files,
they are easy to obtain, for instance by scanning a printed design,
saving it to a file in some common image format (TIFF, JPEG, etc.) or
printing the screen while running the CAD application. If the model
is geometrically simple, it is even possible to draw by hand a sketch
of several projections on a sheet of paper and scan it.

CAD drawings of hoses typically show several orthogonal
projections, distributed spatially like in Fig. 3. That is, two adjacent
views share one common axis. Of course, designs do not always
include all the views but only those necessary to convey the
complete geometry of the hose. Flat tubes, devoid of torsion, need a
single view whereas tubes with two or more bends with torsion
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need two or more of them. We assume the projections in a design
follow this same pattern, as illustrated in Figs. 5a and 6a.

Reconstruction of mechanical parts from CAD drawing views
has been a recurring theme since the early days of document
analysis. The survey [11] summarizes a myriad of proposals
that have been published over the years, categorized by different
criteria. Posterior works on this topic include [12–14]. The
reconstruction of 3D hoses from CAD drawing projections shares
some aspects with them: the feasibility of reconstruction
from dihedral views, from one or multiple views, and the
inclusion of curves in the definition of the part. However, there
are also some differences that motivate a specific solution: our
goal is to explicitly recover the medial axis and not the whole
surface, the need to obtain a reconstruction from inaccurate and
manually input points, the a priori unknown number of
projections, and the strong constraint that our shapes have
tubular form.

In order to reconstruct the 3D medial axis and the diameters of
section from a CAD drawing image, we ask the user to input
(Fig. 5a):

� The bounding box enclosing each of the projections, specified by
two corners diagonally opposed. Not all of those depicted in the
design may be necessary, but often the 3D reconstruction can be
successfully computed with less of them. However, it is
necessary that the central xy view in Fig. 3b is included if the
reconstruction has to be performed on the basis of two or more
projections.
� A sequence of points on the medial axis within each bounding

box, from one end to the other. In order to get an accurate
reconstruction, the higher the axis curvature (that is, the sharper
the bending), the more points to enter, whereas straight
stretches are fully specified by two points.
� A section is specified by a segment orthogonal to the 2D input

medial axis polyline in some of the selected projections.
Therefore, if the diameter of section is constant along the whole
tube, a unique segment suffices. If not, the user may input several
such segments and the diameter is linearly interpolated in-
between.
� Finally, the two end-points of one segment corresponding to a

longitudinal dimension plus its equivalence in millimeters or
Fig. 4. Variables involved in each iteration of th
inches, in order to compute the scale factor to convert pixels to
longitudinal units.

The case of a single projection of a planar tube is straightfor-
ward, because we can readily compute the 3D coordinates of the
medial axis points entered by the user. The following steps
describe the method in the case of two or more projections:

End-points matching. The goal is to find the correspondences
between the two end points, the first and last clicked along the
medial axis in each selected projection, which are at the two
extremes of the tube (Fig. 3b). This can be done thanks to the
disposition of views in the design: the inclusion of the central view
xy plus the fact that adjacent views share one common axis. In
effect, from the number of views and their relative position we can
identify the 3D axes x, y, z of the two axis of each bounding box. For
instance, the axes of three projections in L shape are, from top to
bottom and left to right, xz, xy, zy. This allows to match points in
adjacent projections as those having a similar value for the
common coordinate, provided a sufficient number of projections
have been considered to avoid ambiguities.

3D point sampling. Consider the polyline defined by the sorted
list of points along the medial axis entered for each projection. We
now sample N equispaced points along each of them. If we suppose
they are corresponding, we can compute their world 3D
coordinates thanks to the labeling of each view’s axis as x, y or z

and the scale factor. This is an initial estimation p1
i ; i ¼ 1 . . . N of the

medial axis curve that the following step will deform towards its
real shape (Fig. 5b).

Iterative estimation. Let pn
i be the sequence of points along the

medial axis which constitute the present solution and which have to
be updated to pnþ1

i ; i ¼ 1 . . . N so that they get closer to the medial
axis in each view. All pn

i are projected to every orthogonal view (grey
circles in Fig. 4), giving rise to 2D points rk

i , where k indexes
projections. Then, 2D vectors uk

i are computed between rk
i and the

closest point to the polyline defined by the points manually entered
by the user on the kth view (white circles). Each point pn

i is moved in
the direction of the 3D displacement vector vi obtained by adding all
the vectors uk

i . Finally, the resulting sequence is smoothed by
weighted moving average. Algorithm 3 summarizes this step.

Once we know the 3D medial axis, it is easy to compute the
section diameter for each of those points Fig. 6. Then, one can
e 3D medial axis reconstruction, see text.



Fig. 5. (a) Manual user input on a CAD drawing image, (b) evolution of the 3D medial axis polyline at the first (solid blue curve), two intermediate and last (black) iteration, (c)

reconstruction and (d) convergence to the true medial axis measured as average distance to the closest medial axis ground truth with respect to the number of iterations. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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sample points along the perimeter of each circular section and
generate a triangular mesh to visualize the reconstructed model, as
shown in Fig. 5 c.

Algorithm 3. Iterative 3D reconstruction. Constants a = 0.5,
b = 0.4, minDif = 0.05, maxNumIter = 20.

function RECONSTRUCT(P, I, A)

input:
P initial list of N sampled 3D medial axis points, P ¼ f pi 2 R3; i ¼ 1 . . . Ng
Ik = {(aki, bki), i = 1 . . . nk} user input points along 2D medial axis of kth

projection, nk number of user input points in kth projection

I = {Ik, k = 1 . . . np}, np number of projections

Ak = {(hk, nk) 2 � {x, y, z} � � {x, y, z}} axes of the kth projection

A = {Ak, k = 1 . . . np} axes for all views

output:
Pn final list of N medial axis points

n   1 " number of iterations



Fig. 6. (a) Scanned image of a blueprint with the three orthogonal views in European

(first angle) system and (b) rendering of its 3D reconstruction from medial axis and

diameter segments input by mouse clicking.
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P1  P " initialization of p1
i ; i ¼ 1 . . . N

repeat
for i = 1, N do " for each point in the present solution

vi  ð0; 0; 0Þ
for k   1, np do " for each projection

rk
i   PROJECT( pn

i ; Ak)

uk
i   NEARESTPOINT(rk

i ; Ik) � rk
i

vi  ADDTO3DVECTOR(vi; uk
i ; Ak)

end for
qi  qi þ avi

end for
dif   0

for i = 2, N � 1 do" update all points but the two ends

pnþ1
i   qi þ bð ðqiþ1 � qiÞ þ ðqi�1 � qiÞ Þ

dif   dif þ jj pnþ1
i � pn

i jj2
end for
n   n + 1

dif   dif =
PN

i¼2 jj pn
i � pn

i�1jj2
until (dif < minDif) _ (n > maxNumIter)

return Pn

4. Time regression

Once we have obtained the medial axis representation of a tube
we are ready to compute relevant shape and size features from it
and then estimate the manufacturing time. But which features?
And how to estimate that time? One has first to find good, relevant
features on which the time depends. Then, learn a good prediction
(regression) function from a training set, consisting of a number of
tubes for which the STL files and the expert’s estimated times are
available.

As for the features, what matters according to the expert are the
size and the shape ‘complexity’. The former clearly depends on the
medial axis length and the sections diameter. The later is more
difficult to precise. A tube mold takes more time to wrap if it has
more bends, the bending is sharp, or the section diameter at it is
large. Therefore, we have selected as candidate features the medial
axis length, the most frequent of the section diameters and the
average of the medial axis curvature sampled along it. One
problem we have to face is the limited size of the available training
set, which precludes the use of many features because of the curse
of dimensionality.1 Therefore, we have experimented with
different combinations of the former list of features to come up
with just two features: area (product of length and diameter) and
the ratio between mean medial axis curvature and representative
diameter. Another advantage of reducing the number of features to
two is that their values for the training and testing samples and
also the regression function, which is a surface, can be visualized
(Fig. 7a).

We perform regression through a Gaussian process (GP)
because of several advantages it offers. Firstly, it allows a sound
Bayesian formulation of the regression problem in terms of
obtaining the value which maximizes a certain predictive
probability distribution conditioned to (given) the training data.
Thus, regression not only produces a prediction but also a measure
of its uncertainty. Second, the regression function is not restricted
to belong to a certain class of functions like linear, polynomial, B-
splines, etc. but a GP simply let us impose a certain degree of
smoothness. Third, they are governed by just a couple of
parameters, in the simplest version we use. Finally, in spite of
their theoretical complexity, they are simple to implement and fast
to train and compute. For the sake of completeness, we present in
the following the very basics of regression through Gaussian
processes. A complete development can be found in [21] and a
quick introduction in [22].
1 When the number of dimensions increases, the volume of the space increases

exponentially and the available data becomes too sparse, loosing their structure and

hampering the predictive capacity of any regression method.
Suppose we are given a set of training samples {(xi, yi),
i = 1 . . . n} and let X and y be the matrix and column vector built by
stacking the xi and yi, respectively. Further, suppose that the
training data is not noise-free but yi = fi + e, being e a random
Gaussian noise with variance s2

noise. We want to estimate the value
fs of the regression function at some point xs. Then, it can be shown
that the most probable value for the prediction of fs is f s with an
uncertainty of var(fs), being

f s ¼ Kðxs; XÞ ðKðX; XÞ þ s2
noiseIÞ�1y ð1Þ

varð f sÞ ¼ Kðxs; xsÞ � Kðxs; XÞ> ðKðX; XÞ þ s2
noiseIÞ�1Kðxs; XÞ ð2Þ

K(P, Q) = [ k(pi, qj) ], pi 2 P, qj 2 Q, that is, the matrix resulting
from the evaluation of k for every possible pair of points in P � Q. k
is the so called covariance function for which we have made a
simple and common choice, the square exponential function

kðx; x0Þ ¼ exp � jx�x0 j2

2l2

� �
ð3Þ

In practice, since ðKðX; XÞ þ s2
noiseIÞ is symmetric and semi-

positive definite, those computations can be performed efficiently



Fig. 7. (a) Regression surface for snoise = 0.2, l = 0.6 and feature values for the training set after normalization, (b) time distribution of the available samples, (c) absolute

relative error distribution (dashed red) and accumulated distribution (continuous blue) and (d) ground-truth and predicted time for all the samples in 10-fold cross-

validation and the chosen parameters. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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by Cholesky decomposition. Note that in order to predict fs given
some xs, we just need to compute the product of the row vector
K(xs, X) with the previously stored fixed column vector
ðKðX; XÞ þ s2

noiseIÞ�1y. In next section we detail how we have set
the only two parameters snoise and l.

5. Results

The available sample set consists of 171 STL files of assorted
sizes and shapes plus the corresponding expert’s predicted time.
The medial axis length and representative section diameter range
from 13 cm to 1.2 m and from 8 mm to 20 cm, respectively. The
number of bends, with or without torsion is 1–5. We partition this
set into training and testing sets according to the k-fold cross-
validation technique, commonly used to estimate the accuracy of a
predictive model when the samples are scarce [17]. The whole
sample set is randomly divided into k subsets. Of them, k � 1 are
used for training and the remaining once for testing. The process is
repeated k times, using each subset exactly one as testing set. Thus,
in the end, one gets a unique estimation for each sample after
training with other samples. We have exhaustively explored the
intervals [0.1, 0.6] for snoise and [0.05, 2.0] for l at fine steps of 0.05.
For each possible pair of values we have performed k-fold cross-
validation with k = 10, and computed the prediction error for each
sample in the testing set. The combination with more samples with
an absolute relative error less than 15% has been chosen,
snoise = 0.2, l = 0.6. This threshold was considered by the expert
as the acceptable error upper bound. Fig. 7a shows the resulting
smooth regression surface. We observe that the samples density in
the parameter space is not uniform but lower for large values of
either of the two features or the time (also shown in Fig. 7b), thus
producing less accurate predictions. Nevertheless, we overall



Fig. A.1. Graphical user interface of the applet.
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obtain a good prediction as illustrated in Fig. 7c: 61%, 82% and 92%
of samples have a relative error less than 10%, 15% and 20%,
respectively.

From Fig. 7d it can be appreciated that the times decided by the
expert, which we take as ground-truth, are multiple of 5 min for
times greater than 20 min. The reason argued is the difficulty to
decide the time more precisely for the largest and/or more complex
parts. On this regard, 89% of the predictions produced by the
Gaussian process lie within the expert’s time �5 min.

6. Conclusions

We have presented a method for the quotation of custom hoses
from STL files and images of CAD drawings. In both cases, it is based
on the extraction of the 3D medial axis and section diameters. Size
and geometry features are then computed, and a regression
function, learned from a training set, is able to estimate the
manufacturing time with a low relative error, assessed by k-fold
cross validation. The 3D reconstruction from either STL files or CAD
drawing images allows to accurately estimate the tube surface and
thus also the cost of the necessary material to wrap the hose, which
is in a non-negligible part of the total cost. We believe this
approach of cost estimation can be extended to other tubular-like
parts for which the same types of inputs are available and the
fabrication process is not amenable to analytic cost estimation.
Future extensions of the present work are dealing with hoses with
branches and also non-circular (e.g. elliptical) sections, which are
less common but nevertheless existing variants of custom hoses.
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Appendix A. Implementation

The method presented has been implemented as a Java applet,
and thus can be accessed by authorized users from any browser
with Java runtime support. Fig. A.1 shows the main window of the
graphical user interface. Note that there is a third input type:
manually entering the length, diameter and number of bends. It
also produces a price estimation by means of another learned
Gaussian process regression function, though with a lower
accuracy. The interface shows also the possibility of getting
quotations for straight tubes and elbows, again with a different
regression function in the later case.

Appendix B. Supplementary Data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.compind.2012.
11.009.
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