toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Arnau Ramisa; Alex Goldhoorn; David Aldavert; Ricardo Toledo; Ramon Lopez de Mantaras edit  doi
openurl 
  Title Combining Invariant Features and the ALV Homing Method for Autonomous Robot Navigation Based on Panoramas Type Journal Article
  Year 2011 Publication Journal of Intelligent and Robotic Systems Abbreviated Journal JIRC  
  Volume 64 Issue 3-4 Pages 625-649  
  Keywords  
  Abstract Biologically inspired homing methods, such as the Average Landmark Vector, are an interesting solution for local navigation due to its simplicity. However, usually they require a modification of the environment by placing artificial landmarks in order to work reliably. In this paper we combine the Average Landmark Vector with invariant feature points automatically detected in panoramic images to overcome this limitation. The proposed approach has been evaluated first in simulation and, as promising results are found, also in two data sets of panoramas from real world environments.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Netherlands Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-0296 ISBN Medium  
  Area Expedition Conference  
  Notes RV;ADAS Approved no  
  Call Number Admin @ si @ RGA2011 Serial (up) 1728  
Permanent link to this record
 

 
Author Fadi Dornaika; Jose Manuel Alvarez; Angel Sappa; Antonio Lopez edit   pdf
doi  openurl
  Title A New Framework for Stereo Sensor Pose through Road Segmentation and Registration Type Journal Article
  Year 2011 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 12 Issue 4 Pages 954-966  
  Keywords road detection  
  Abstract This paper proposes a new framework for real-time estimation of the onboard stereo head's position and orientation relative to the road surface, which is required for any advanced driver-assistance application. This framework can be used with all road types: highways, urban, etc. Unlike existing works that rely on feature extraction in either the image domain or 3-D space, we propose a framework that directly estimates the unknown parameters from the stream of stereo pairs' brightness. The proposed approach consists of two stages that are invoked for every stereo frame. The first stage segments the road region in one monocular view. The second stage estimates the camera pose using a featureless registration between the segmented monocular road region and the other view in the stereo pair. This paper has two main contributions. The first contribution combines a road segmentation algorithm with a registration technique to estimate the online stereo camera pose. The second contribution solves the registration using a featureless method, which is carried out using two different optimization techniques: 1) the differential evolution algorithm and 2) the Levenberg-Marquardt (LM) algorithm. We provide experiments and evaluations of performance. The results presented show the validity of our proposed framework.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1524-9050 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ DAS2011; ADAS @ adas @ das2011a Serial (up) 1833  
Permanent link to this record
 

 
Author Sergio Vera; Debora Gil; Antonio Lopez; Miguel Angel Gonzalez Ballester edit   pdf
url  openurl
  Title Multilocal Creaseness Measure Type Journal
  Year 2012 Publication The Insight Journal Abbreviated Journal IJ  
  Volume Issue Pages  
  Keywords Ridges, Valley, Creaseness, Structure Tensor, Skeleton,  
  Abstract This document describes the implementation using the Insight Toolkit of an algorithm for detecting creases (ridges and valleys) in N-dimensional images, based on the Local Structure Tensor of the image. In addition to the filter used to calculate the creaseness image, a filter for the computation of the structure tensor is also included in this submission.  
  Address  
  Corporate Author Alma IT Systems Thesis  
  Publisher Place of Publication Editor  
  Language english Summary Language english Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;ADAS; Approved no  
  Call Number IAM @ iam @ VGL2012 Serial (up) 1840  
Permanent link to this record
 

 
Author Jose Carlos Rubio; Joan Serrat; Antonio Lopez; Daniel Ponsa edit   pdf
url  doi
openurl 
  Title Multiple target tracking for intelligent headlights control Type Journal Article
  Year 2012 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 13 Issue 2 Pages 594-605  
  Keywords Intelligent Headlights  
  Abstract Intelligent vehicle lighting systems aim at automatically regulating the headlights' beam to illuminate as much of the road ahead as possible while avoiding dazzling other drivers. A key component of such a system is computer vision software that is able to distinguish blobs due to vehicles' headlights and rear lights from those due to road lamps and reflective elements such as poles and traffic signs. In a previous work, we have devised a set of specialized supervised classifiers to make such decisions based on blob features related to its intensity and shape. Despite the overall good performance, there remain challenging that have yet to be solved: notably, faint and tiny blobs corresponding to quite distant vehicles. In fact, for such distant blobs, classification decisions can be taken after observing them during a few frames. Hence, incorporating tracking could improve the overall lighting system performance by enforcing the temporal consistency of the classifier decision. Accordingly, this paper focuses on the problem of constructing blob tracks, which is actually one of multiple-target tracking (MTT), but under two special conditions: We have to deal with frequent occlusions, as well as blob splits and merges. We approach it in a novel way by formulating the problem as a maximum a posteriori inference on a Markov random field. The qualitative (in video form) and quantitative evaluation of our new MTT method shows good tracking results. In addition, we will also see that the classification performance of the problematic blobs improves due to the proposed MTT algorithm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1524-9050 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ RLP2012; ADAS @ adas @ rsl2012g Serial (up) 1877  
Permanent link to this record
 

 
Author Mohammad Rouhani; Angel Sappa edit   pdf
doi  openurl
  Title Implicit Polynomial Representation through a Fast Fitting Error Estimation Type Journal Article
  Year 2012 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 21 Issue 4 Pages 2089-2098  
  Keywords  
  Abstract Impact Factor
This paper presents a simple distance estimation for implicit polynomial fitting. It is computed as the height of a simplex built between the point and the surface (i.e., a triangle in 2-D or a tetrahedron in 3-D), which is used as a coarse but reliable estimation of the orthogonal distance. The proposed distance can be described as a function of the coefficients of the implicit polynomial. Moreover, it is differentiable and has a smooth behavior . Hence, it can be used in any gradient-based optimization. In this paper, its use in a Levenberg-Marquardt framework is shown, which is particularly devoted for nonlinear least squares problems. The proposed estimation is a generalization of the gradient-based distance estimation, which is widely used in the literature. Experimental results, both in 2-D and 3-D data sets, are provided. Comparisons with state-of-the-art techniques are presented, showing the advantages of the proposed approach.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ RoS2012b; ADAS @ adas @ Serial (up) 1937  
Permanent link to this record
 

 
Author Arnau Ramisa; David Aldavert; Shrihari Vasudevan; Ricardo Toledo; Ramon Lopez de Mantaras edit  doi
openurl 
  Title Evaluation of Three Vision Based Object Perception Methods for a Mobile Robot Type Journal Article
  Year 2012 Publication Journal of Intelligent and Robotic Systems Abbreviated Journal JIRC  
  Volume 68 Issue 2 Pages 185-208  
  Keywords  
  Abstract This paper addresses visual object perception applied to mobile robotics. Being able to perceive household objects in unstructured environments is a key capability in order to make robots suitable to perform complex tasks in home environments. However, finding a solution for this task is daunting: it requires the ability to handle the variability in image formation in a moving camera with tight time constraints. The paper brings to attention some of the issues with applying three state of the art object recognition and detection methods in a mobile robotics scenario, and proposes methods to deal with windowing/segmentation. Thus, this work aims at evaluating the state-of-the-art in object perception in an attempt to develop a lightweight solution for mobile robotics use/research in typical indoor settings.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Netherlands Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-0296 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ RAV2012 Serial (up) 2150  
Permanent link to this record
 

 
Author Cristhian Aguilera; Fernando Barrera; Felipe Lumbreras; Angel Sappa; Ricardo Toledo edit   pdf
doi  openurl
  Title Multispectral Image Feature Points Type Journal Article
  Year 2012 Publication Sensors Abbreviated Journal SENS  
  Volume 12 Issue 9 Pages 12661-12672  
  Keywords multispectral image descriptor; color and infrared images; feature point descriptor  
  Abstract Far-Infrared and Visible Spectrum images. It allows matching interest points on images of the same scene but acquired in different spectral bands. Initially, points of interest are detected on both images through a SIFT-like based scale space representation. Then, these points are characterized using an Edge Oriented Histogram (EOH) descriptor. Finally, points of interest from multispectral images are matched by finding nearest couples using the information from the descriptor. The provided experimental results and comparisons with similar methods show both the validity of the proposed approach as well as the improvements it offers with respect to the current state-of-the-art.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ ABL2012 Serial (up) 2154  
Permanent link to this record
 

 
Author Fernando Barrera; Felipe Lumbreras; Angel Sappa edit   pdf
doi  openurl
  Title Multimodal Stereo Vision System: 3D Data Extraction and Algorithm Evaluation Type Journal Article
  Year 2012 Publication IEEE Journal of Selected Topics in Signal Processing Abbreviated Journal J-STSP  
  Volume 6 Issue 5 Pages 437-446  
  Keywords  
  Abstract This paper proposes an imaging system for computing sparse depth maps from multispectral images. A special stereo head consisting of an infrared and a color camera defines the proposed multimodal acquisition system. The cameras are rigidly attached so that their image planes are parallel. Details about the calibration and image rectification procedure are provided. Sparse disparity maps are obtained by the combined use of mutual information enriched with gradient information. The proposed approach is evaluated using a Receiver Operating Characteristics curve. Furthermore, a multispectral dataset, color and infrared images, together with their corresponding ground truth disparity maps, is generated and used as a test bed. Experimental results in real outdoor scenarios are provided showing its viability and that the proposed approach is not restricted to a specific domain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-4553 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ BLS2012b Serial (up) 2155  
Permanent link to this record
 

 
Author David Geronimo; Joan Serrat; Antonio Lopez; Ramon Baldrich edit   pdf
doi  openurl
  Title Traffic sign recognition for computer vision project-based learning Type Journal Article
  Year 2013 Publication IEEE Transactions on Education Abbreviated Journal T-EDUC  
  Volume 56 Issue 3 Pages 364-371  
  Keywords traffic signs  
  Abstract This paper presents a graduate course project on computer vision. The aim of the project is to detect and recognize traffic signs in video sequences recorded by an on-board vehicle camera. This is a demanding problem, given that traffic sign recognition is one of the most challenging problems for driving assistance systems. Equally, it is motivating for the students given that it is a real-life problem. Furthermore, it gives them the opportunity to appreciate the difficulty of real-world vision problems and to assess the extent to which this problem can be solved by modern computer vision and pattern classification techniques taught in the classroom. The learning objectives of the course are introduced, as are the constraints imposed on its design, such as the diversity of students' background and the amount of time they and their instructors dedicate to the course. The paper also describes the course contents, schedule, and how the project-based learning approach is applied. The outcomes of the course are discussed, including both the students' marks and their personal feedback.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9359 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; CIC Approved no  
  Call Number Admin @ si @ GSL2013; ADAS @ adas @ Serial (up) 2160  
Permanent link to this record
 

 
Author Joan Serrat; Felipe Lumbreras; Antonio Lopez edit   pdf
doi  openurl
  Title Cost estimation of custom hoses from STL files and CAD drawings Type Journal Article
  Year 2013 Publication Computers in Industry Abbreviated Journal COMPUTIND  
  Volume 64 Issue 3 Pages 299-309  
  Keywords On-line quotation; STL format; Regression; Gaussian process  
  Abstract We present a method for the cost estimation of custom hoses from CAD models. They can come in two formats, which are easy to generate: a STL file or the image of a CAD drawing showing several orthogonal projections. The challenges in either cases are, first, to obtain from them a high level 3D description of the shape, and second, to learn a regression function for the prediction of the manufacturing time, based on geometric features of the reconstructed shape. The chosen description is the 3D line along the medial axis of the tube and the diameter of the circular sections along it. In order to extract it from STL files, we have adapted RANSAC, a robust parametric fitting algorithm. As for CAD drawing images, we propose a new technique for 3D reconstruction from data entered on any number of orthogonal projections. The regression function is a Gaussian process, which does not constrain the function to adopt any specific form and is governed by just two parameters. We assess the accuracy of the manufacturing time estimation by k-fold cross validation on 171 STL file models for which the time is provided by an expert. The results show the feasibility of the method, whereby the relative error for 80% of the testing samples is below 15%.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.057; 600.054; 605.203 Approved no  
  Call Number Admin @ si @ SLL2013; ADAS @ adas @ Serial (up) 2161  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: