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Abstract— This paper presents a simple distance estima-
tion for implicit polynomial fitting. It is computed as the
height of a simplex built between the point and surface
(i.e., a triangle in 2D or a tetrahedron in 3D), which is
used as a coarse but reliable estimation of the orthogonal
distance. The proposed distance can be described as a
function of the coefficients of the implicit polynomial.
Moreover, it is differentiable and has a smooth behavior.
Hence, it can be used in any gradient based optimization.
In the current work, its use in a Levenberg-Marquardt
framework is shown, which is specially devoted for non-
linear least squares problems. The proposed estimation is
a generalization of the gradient based distance estimation,
which is widely used in the literature. Experimental results,
both in 2D and 3D data sets, are provided. Comparisons
with the state of the art are presented, showing the
advantages of the proposed approach.

Index Terms— Curve/Surface Fitting; Geometric Dis-
tance Estimation; Residual Error Minimization; Implicit
Polynomial.

I. INTRODUCTION

Implicit Polynomials (IPs) have been used in the computer
vision field because they are advantageous compared with
other representations. Firstly, they are a compact way to
represent a given data set—in a 2D/3D space; and secondly,
since they do not require any parametrization, they can be
obtained without a prior-knowledge about the data point spatial
distribution, or local neighborhood relationship. They are very
attractive in particular when compared with other kinds of data
representations that need to know the spatial data distribution
(e.g., triangular meshes [1] [2], B-Spline or parametric active
contours [3], [4]). Implicit polynomial compactness has been
also an attractive point to be exploited when a high level rea-
soning is needed (e.g., object recognition [5], object modelling
[6] [7], reverse engineering, etc).

In general, IP representations are obtained through a fitting
process. Two different approaches have been proposed in the
literature to find the ”best” IP fitting the given data set: i)
algebraic and ii) geometric; their difference depends on the
criteria used to define ”best” (i.e., accuracy vs speed). Next
section briefly details these two approaches.
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The current paper has two main contributions. The first
contribution is the estimation of the orthogonal distance (Eu-
clidean) through a simple approach, which has been initially
proposed for the quadratic IP case [8], [9]. The advantage
of the proposed estimation is twofold. First, it provides a
more accurate value than current approaches. Second, it can
be efficiently computed and run in real time. The second
contribution is based on the use of such an estimation in a
non-linear minimization framework: the Levenberg-Marquardt
algorithm. The rest of the paper is organized as follows. Sec-
tion 2 describes the problem and introduces related work. The
proposed technique is presented in section 3. Section 4 gives
experimental results and comparisons. Finally, conclusions are
presented in section 5.

II. PROBLEM FORMULATION AND RELATED WORK

The two major approaches in implicit polynomial fitting—
algebraic and geometric—are briefly presented here to show
the motivations of the proposed approach. Implicit polynomial
fitting aims at finding the best polynomial that describes a
given set of points by means of its zero set. In other words,
the value of the polynomial should reach zero at the location
of the given data points. Let fc(x) be an implicit polynomial
of degree d represented as:

fc(x) =
∑

(i+j+k)5d

{i,j,k}=0

ci,j,k · xi · yj · zk, (1)

or, in a vector form:

fc(x) = mTc, (2)

where c = [c0,0,0, c1,0,0, ...c0,0,d]
T is the column vector of

polynomial coefficients having as many components as the
combination of (d+ 3) taken 3 at a time without repetitions:
Cd+3

3 = (d+3)!
d!3! ; and m is the column vector of monomials:

m = m(x) = [x0y0z0, x1y0z0, ...x0y0zd]T ; the fitting
problem consists of first defining a criterion—or residual
error—for measuring the closeness of the zero set, Zf = {x :
fc(x) = 0}, to the given data set, and then minimizing this
criterion to find the best coefficient vector c.

Let P = Γ0 = {pi}N1 be the set of given data points with
coordinates x (picked up from object boundaries in 2D or
surfaces in 3D); then the fitting problem is defined as:

ĉ = argmincDist(P, fc), (3)

where argminc stands for the polynomial coefficient vector
c where the Dist expression attains its minimum value; there
are two different approaches to find that best coefficient vector
ĉ as detailed next.
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A. Algebraic Approaches
Since the implicit representation is used, a point is on the

surface if and only if the output of fc in (2) is zero at the
given point. It leads us to define the following optimization
criterion, which is known as algebraic distance:

Dist(P, fc) =
N∑
i=1

f2
c (pi). (4)

This optimization problem has the trivial answer c = 0,
giving zero as a minimal value. In order to avoid the trivial
answer, a normalization constraint must be imposed. For
example, the two classical normalization constraints used in
the literature are: i) forcing the optimum vector to have a
unit l1 length (i.e.,

∑
ci = 1), or ii) having a unit constant

coefficient (i.e., c0 = 1). More elaborated constraints have
been also proposed; for instance [10] imposes the mean value
of gradient length to be unit (i.e., 1

N

∑N
i=1 ∥∇f2

c (pi)∥2=1).
Due to the simplicity, the second normalization constraint
is used in the current work, and the constant element in
monomial, together with its corresponding coefficient, are
removed in this case. This minimization problem is also
equivalent to the overdetermined system of equations:

Mc = b, (5)

where M is the monomial matrix (every row contains the
monomial vector mT (pi) computed at the given point), and
b = −1, is a column vector containing -1 in every entry.
Regardless to these interpretations, the optimal solution could
be computed algebraically through least squares solutions:

c = (MTM)−1MT b. (6)

Two common problems, inherent to algebraic approaches,
are (a) computational instability of the zero set; and (b) lack of
geometric information of the data in this procedure. The non-
iterative framework of algebraic approaches is an appealing
feature for many applications. For instance, focussing on the
instability problem, Helzer et al. [11] analyze the sensitivity
of the zero set to small coefficient changes and minimize an
upper bound of the error in order to have a more stable output.
Keren et al. [12] try to constrain the surface parameter space
in order to obtain a geometrically reasonable output. Tasdizen
et al. [13] propose to add some geometric concept inside
the optimization problem. They try to maintain the estimated
gradient value at each data points while they fit the data.

The 3L algorithm proposed by [14] is a linear least squares
polynomial fitting that consists of generating two additional
level sets: Γ−δ and Γ+δ from the given data set Γ0. These
two additional data sets are generated so that one is internal
and the other is external, and are placed at a distance ±δ from
the original data along a direction that is locally perpendicular
to the given data set. Hence, the 3L algorithm incorporates
local geometric information resulting in a more stable solution.
Considering the three level sets: {Γ−δ,Γ0,Γ+δ} the equation
(5) could be represented by using a block matrix M3L and a
block column vector b:

M3L =

 MΓ−δ

MΓ0

MΓ+δ

 , b =

 −ϵ
0
+ϵ

 , (7)

where MΓ0 , MΓ+δ
, MΓ−δ

are matrices of monomials calcu-
lated in the original, inner and outer sets respectively; ±ϵ are
the corresponding expected values in the inner and outer level
sets. The distance metric proposed by the 3L algorithm is:

Dist(P, fc) =
∑
x∈Γ0

fc(x)
2 +

∑
x∈Γ+δ

(fc(x)− ϵ)2

+
∑

x∈Γ−δ

(fc(x) + ϵ)2. (8)

Then, the least squares solution for c is obtained as:

c = M†
3Lb = (MT

3LM3L)
−1MT

3Lb, (9)

where M†
3L denotes the pseudoinverse of M3L. Aiming at

improving the accuracy of the 3L algorithm, [15] proposes
an algorithm, still in the algebraic category, which relaxes the
additional constraints (7) so that the values (±ϵ) are adjusted
independently for every single point.

B. Geometric Approaches

In this case the distance between a point and the surface is
usually defined as the shortest distance between this point and
its correspondence on the surface (i.e., orthogonal distance).
Thus, in the general case of geometric methods, we have the
following optimization problem:

Dist(P, fc) =
N∑
i=1

minp̂id
2(pi, p̂i), (10)

where each p̂i is the correspondence of pi on the surface.
Here we consider the l2 norm to calculate the distance d, and
consequently a non linear least squares optimization must be
solved.

Theoretically, both unknown surface parameters and the
correspondences must be found simultaneously, but practically
this problem is tackled by first assuming an initial surface,
and then refining it till convergence is reached. So, the fitting
problem is split up into two stages: i) point correspondence
search; and ii) surface parameter refinement. The first stage
deals with the summands in (10), while the second one
concerns about (3).
Point correspondence search: Regarding the first stage two
different strategies have been proposed in the literature: (a)
finding the shortest distance by solving a non-linear system
(e.g., [16], [17]); and (b) computing an estimation of the
shortest distance (e.g., [10], [18], [19]).

In [16] Ahn et al. propose a method to find the correspon-
dence (or foot-point) on the surface, which is based on its
geometric properties. This foot-point, p̂, is somewhere on the
surface satisfying fc(p̂) = 0. Furthermore, the line connecting
the data point with the foot-point must be parallel to the ∇fc
at the foot-point, where ∇ is the gradient operator. In other
words, we must have ∇fc × (p̂− p) = 0. Merging these two
conditions, the following system of equations must be solved:(

fc
∇fc × (p̂− p)

)
= 0. (11)

This equation could be solved by the Newton–Rophson algo-
rithm for non-linear system of equations. Although this method
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is precise enough, and even covers some well-known method
in the literature like [10] and [20], it is quite time-consuming
due to the iterations.

In [17] the orthogonal fitting is extended for general error
functions, such as l1 and l∞ norm of the residual error instead
of the common l2 norm. This highlights the importance of the
error function selection for the fitting process. The authors
present the fitting algorithm as an evolutionary process of a
surface along its normal direction. They discuss and compare
their approach with other common error functions including
the algebraic types.

Instead of computing the shortest distance through (11), [19]
proposes to approximate it, avoiding iterative approaches as a
result. In that work, which is an extension of [18] for more
general surfaces, first a normal vector −→n p for each point p is
computed by using principal components analysis (PCA) in a
small M × M neighborhood centered at each point [21]. In
other words, −→n p = (n1, n2, n3) is defined as the eigenvector
of the local covariance matrix Cov associated with the smallest
eigenvalue:

Cov =
1

s

s∑
i=1

(pi − p̃)(pi − p̃)T , (12)

where p̃ = 1
s

∑s
i=1 pi is the vector showing the mean position

of the neighboring points in the M ×M region. Finally, p̂ is
computed as the intersection of the surface fc(x) = 0 with a
line passing through p and parallel to −→n p :

x− xp

n1
=

y − yp
n2

=
z − zp
n3

. (13)

The intersection is used as an approximation for the foot-point
p̂ in (10).

In [10], Taubin proposes an approximation for (10), which
is based on the first order Taylor expansion of the distance
function. The distance could be computed through normalizing
the algebraic distance by the gradient norm:

Dist(P, fc) =
N∑
i=1

(
|fc(pi)|

||∇fc(pi)||

)2

. (14)

This approximated distance is used in an iterative weighted
least squares method as well as in a nonlinear optimization
framework. In addition, a new constraint is imposed on the
coefficient vector, which is based on the data points as well
as on the coefficients. The approximated distance proposed
by Taubin [10] may not reach the correspondence point lying
on the zero set, which could affect the final fitting result. In
fact instead of considering the zero set, the level set where
the point is lying on is affected by this optimization process.
Finally every point forces its level set to move in order to reach
a lower accumulated distance, and the best set of parameters
will be found.
Surface parameter refinement: As a result from the previous
stage the set of points {p̂i}ni=1, corresponding to every pi
in the given data set has been found. Afterward, it must be
followed by an optimization framework to refine the surface
parameter. Although different optimization algorithms could
be used (e.g., Genetic Algorithm (GA) [19], Trust region
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Fig. 1. Simplex used for estimating the geometric distance: (a) 2D case;
(b) 3D case.

[22], Quasi-Newton method [23], Particle Swarm [24]) in
the current work the Levenberg-Marquardt algorithm (LMA)
[25] has been chosen since it exploits gradient information
provided by the proposed distance estimation. LMA, in some
sense, interpolates between the Gauss–Newton algorithm and
the gradient descent (more details about LMA are given in
Section III-B).

III. PROPOSED APPROACH

The current work proposes a geometric approach to tackle
IPs fitting through an estimation of the orthogonal distance.
In spite of being focussed on the geometric framework, the
polynomial coefficients are firstly initialized by using an
algebraic based algorithm—the 3L algorithm [14] has been
used. This initialization process is intended for speeding up
the convergence of the algorithm; other strategies, for instance
starting with the smallest bounding circle/sphere can be used.
The proposed geometric approach consists of two stages. First,
the residual error from the given set of points to the initial IP
coefficients is estimated by means of the proposed approach.
Then, the IP coefficients are accordingly updated through
LMA. The two stages are repeated till convergence is reached;
they are detailed next.

A. Approximated Residual Error

The first contribution of the current work lies in a direct
approach to estimate the orthogonal distance. It works as
follows. First a simplex is constructed through each point and
its intersections along the coordinate axis. A simplex is a
triangle in 2D and a tetrahedron in 3D, as depicted in Fig.
1(a) and Fig. 1(b) respectively. Without loss of generality, the
3D case is considered here. In this case, having constructed
the tetrahedron, its height segment is considered as an ap-
proximation of the geometric distance. This tetrahedron is
defined by the given point and three intersections satisfying
fc(x, yi, zi) = 0, fc(xi, y, zi) = 0 and fc(xi, yi, z) = 0,
where p = pi(xi, yi, zi) is the given point. In the particular
case tackled in this work, since the fitted curve/surface is
defined by the implicit polynomial (1), the intersecting points
are found by computing the closest root of a one dimensional
function to the data point.

Once the intersecting points have been obtained, a direct
formula is used to estimate the geometric distance. Let r,
s and t be the three intersections with the current surface,
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(a) (b) (c) (d)

Fig. 2. Contour of constant distance for: (a) Orthogonal distance; (b) algebraic distance; (c) [10]; (d) proposed distance estimation.

which create a triangular planar patch (see Fig. 1(b)). Since
the volume of the tetrahedron is defined as the product of
the area of each base by its corresponding height, three sets
of expressions lead us to the same value. Hence, the height
of the tetrahedron, dTH , could easily be computed from the
following relationship:

dTH = (|pr|.|ps|.|pt|)/|r⃗s× r⃗t| (15)

=
|pr|.|ps|.|pt|√

(|pr|.|ps|)2 + (|pr|.|pt|)2 + (|ps|.|pt|)2
,

where × refers to the cross product operator between two
vectors. Similar relationship can be obtained in the 2D case
by using the triangle area instead of the tetrahedron volume.
More details can be found in [9].

As presented above, in order to estimate the distance, the
intersections of the curve/surface along the coordinate axis
must be found at first. In the quadric case these intersections
can be directly found ([9]). However, for higher degree cases,
an iterative method should be used to find the roots. In the
current implementation Newton’s method has been used [26].
In case the first iteration is considered, an approximation of the
root can be obtained through the first order Taylor expansion.
For instance, the expansion along the x axis can be expressed
as follows:

f(x, yi, zi) ≃ f(xi, yi, zi) + fx(xi, yi, zi) · (x− xi), (16)

where fx corresponds to the partial derivative in the x direction
and x = r is the intersection of the surface with the line
passing through p in the x direction. Hence, the segment |pr|
can be easily estimated as:

|pr| ≃ −f(pi)/fx(pi), (17)

considering similar approximations for the other two inter-
sections, the proposed distance for the point pi could be
approximated as follows:

dTH ≃ |f/fx|.|f/fy|.|f/fz|
f2

√
(1/fx.fy)2 + (1/fx.fz)2 + (1/fy.fz)2

=
|f |

||∇f ||
, (18)

thus, the proposed distance is a generalization of the Taubin’s
method when the intersections are approximated.

The preciseness of the proposed distance is presented for
two examples in Fig. 2 and compared with other approximated
distances as well as the orthogonal one. The first row of the
figure shows the iso-contours 1 of the set {(x, y) : xy = 0},
which consists of two intersecting lines, and the second row
shows iso-contours of a regular curve {(x, y) : 8x2 + (y2 −
4)2−32 = 0}. As illustrated in last two columns, our method
and Taubin’s behave similarly in the linear case (when the
Jacobian matrix is linear with respect to the point coordinates).
In the second example our method outperforms compared with
other approximations and have a quite similar result to the iso-
contours obtained by the orthogonal method.

B. Implicit Polynomial Fitting

As a result from the previous stage the distance from
each single data point to the current curve/surface has been
found. The accumulation of all these distances provides a good
criteria for curve surface fitting:

Dist(P, fc) =
N∑
i=1

d2TH(pi). (19)

1Contours with the same distance from the zero set.
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This distance is in the least squares form where each term
is non-linear with respect to the coefficient vector c. It pro-
vides a straightforward method to approximate the orthogonal
distance. Hence it can be used in an appropriate optimization
algorithm to find the best parameters describing the given set
of points. We already used this distance in a RANSAC based
framework to find the quadratic surface parameters [9]. Other
optimization techniques, like Genetic Algorithm (GA) [19] or
Quasi-Newton method [23], have been already used in surface
fitting.

The current work not only propose a simple and fast dis-
tance estimation approach but also, as a second contribution,
it shows how this estimation can be used in a non-linear
framework. In the current work, the Levenberg-Marquardt
algorithm (LMA) has been used [25] to optimize the distance
(19) with respect to the curve/surface parameters. LMA is
specifically designed for non-linear functions in the least
squares form, which is the case in (19). It starts from an
initial coefficient vector c0 = c, obtained by some algebraic
fitting technique (as mentioned above the result from the 3L
algorithm has been used as initialization). LMA updates these
parameters iteratively as follows:

ct+1 = ct + β△c,
(JTJ + λdiag(JTJ))△c = JTD, (20)

where β is the refinement step; △c represents the refinement
vector for the surface parameters; λ is the damping parameter
in LMA; J is the Jacobian matrix of D; and the vector
D = (d1(c), ..., dn(c))T corresponds to the distances (di(c) =
dTH(pi)), whose l2 norm must be minimized. Parameter
refinement (20) must be repeated till convergence happens.

Each iteration of LMA contains two stages: 1) distance
estimation; and 2) Jacobian matrix computation. In the first
stage all the intersections along the coordinate axis must be
found. For this purpose Newton’s method is applied to find
the root of the parametric function f(pi+ td), which is a one
dimensional function with respect to t. The direction vector d
is set to e1 = (1, 0, 0)T , e2 = (0, 1, 0)T and e3 = (0, 0, 1)T

for each axis. Having computed all the intersections along the
coordinate axis the terms: |pr|, |ps| and |pt|, and consequently
the distance (15), can be estimated. As mentioned above, it
should be noticed here that if we stop the Newton’s method
after one iteration, the proposed distance will be computed
easily through (18) which is the same as [10].

In order to handle LMA, the value of the functional (19)
and its partial derivatives, which are used to build the Jacobian
matrix, should be provided. These values show the sensitivity
of each di in (15) with respect to the parameter vector c.
The Jacobian matrix could be directly derived through the
differentiation rules as follow:

Jij = ∂j(di) = [|r⃗s× r⃗t|.∂j(|pr|.|ps|.|pt|)
−(|pr|.|ps|.|pt|).∂j |r⃗s× r⃗t|]/|r⃗s× r⃗t|2, (21)

where ∂j = ∂/∂cj is the differentiation operator with respect
to parameters. Since the intersection r, s, and t lies on the
surface, |r⃗s×r⃗t|, |pr|, |ps| and |pt| can be implicitly expressed
as a function of the surface parameters. In order to calculate

pi

ni

ƒ(pi )

Fig. 3. Convergence criteria defined as the deviation between the IP normal
and the local normal is each point.

each term of (21), the implicit differentiation rule must be used
for each intersection. For instance, for a given point pi, the
term |pr| is computed just by considering its x-component:
|pr| = (rxi − pxi ) and its partial derivatives as follows:

∂j |pr| =
drx

dcj
= − ∂f/∂cj

∂f/∂rx
= −mj(r)

fx(r)
, (22)

where mj(r) is the j-th monomial component calculated in the
intersection. The term |r⃗s× r⃗t| can be expressed based on the
intersections as mentioned in (15). Then its partial derivatives
can be computed based on the other single terms.

Having estimated the geometric distance (15) and its Jaco-
bian matrix through (21) the LMA algorithm iterates equations
(20) till convergence is reached. In the current work conver-
gence criteria has been defined using the deviation between the
IP normal and the local normal at each point (see illustration in
Fig. 3). This criteria, on the one hand is easy to be computed;
and on the other hand, it is robust enough to be used with
different geometries. Note that the local normal at each data
is already computed during the initialization stage (the 3L
algorithm). So the only required computation is regarding the
angle estimation:

θi = cos−1( ni.∇f(pi)
∥∇f(pi)∥ ), (23)

additionally, since cos−1|[0,1]→[0,pi/2] is monotonic, just the
absolute value of the inner expression, without calculating the
cosine inverse, is considered. Therefore the criterion used for
measuring the goodness of the current fitting result is:

ξ(c) =
1

N

N∑
i=1

1− | ni.∇f(pi)
∥∇f(pi)∥ |, (24)

where N is the number of points in the original data set.
LMA iterates while (24) decreases more than a user defined
threshold ∆ξ = ξt− ξt−1 or a maximum number of iterations
is reached.

IV. EXPERIMENTAL RESULTS

The proposed method, which belongs to the geometric
fitting category, is implemented and compared with the most
important methods in the literature, both algebraic and ge-
ometric. The results presented in this section are evaluated
using the fitting error (FE) computed for every single points
with [16]. It is used to obtain a quantitative criterion for
comparison, which is referred to as Accumulated Fitting Error
(AFE): AFE=

∑N
i=1 FEi. In all the cases the given data points

are centralized and scaled between [-1,1]. The parameters of
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initialization (3L algorithm), optimization (LMA) and stoping
criterion are empirically set up as presented in Table I. The
same initialization and stopping criterion have been used once
the proposed approach is compared with other approaches.

TABLE I
PARAMETERS SET UP.

Initialization (the 3L alg.) Optimization (LMA) Stopping criterion

δ ϵ λ β ∆ξ # iteration

0.1 1 0.01 0.5 <0.1 <25

In the two dimensional case, different sets of points picked
from quadric contours sampled with non-uniform distributions
have been fitted with the proposed approach and compared
with other approaches. Fig. 4(a) depicts the result of the
proposed method when a non-uniformly distributed 2D data
set is fitted. Both algebraic and proposed method converge to
a similar result, but problems arise when noise is added to
the points. Fig. 4(b) highlights the robustness of the proposed
method to noise; whereas the algebraic one misses the elliptic
structure of the data, and fits the patch as a split hyperbola.
Fitzgibbon et al. [27] propose a fitting method just for 2D
elliptic cases based on algebraic approaches. From this sim-
ple example, one can understand the hardship for algebraic
methods when the function space is bigger than the quadratic
one.

(a) (b)

Fig. 4. Fitting a set of points from an ellipse. (a) Without noise: Algebraic
(dotted line) and proposed method (solid line). (b) Noisy data case: Algebraic
(dotted line) misses the elliptic structure, while the proposed approach (solid
line) reaches a good result.

The proposed approach is also implemented for fitting
higher degrees IPs. Figure 5 shows 2D contours fitted by fifth
and sixth degree IPs (depending on the shape complexity)

(a) (b)

Fig. 6. Fitting two concentric ellipses. (a) Result from the 3L algorithm.
(b) Result from the proposed approach.

(a) (b)

Fig. 8. Solid surface representing a fourth degree IP; wire frame is used to
visualize given data points. (a) IP obtained from the 3L algorithm. (b) Result
from the proposed approach (note the similarity between wire frame and the
surface from the computed IP).

TABLE II
SYNTHETIC DATA SET: AFE CORRESPONDING TO THE ILLUSTRATIONS

PRESENTED IN FIG. 7.

IP 3L alg. Orthogonal Prop.
degree [14] fitting [16] approach

Fig. 7(a) second 9.58 5.56 5.39
Fig. 7(b) second 2.42 1.32 1.20
Fig. 7(c) fifth 1.89 0.69 0.68
Fig. 7(d) third 1.93 1.73 1.69
Fig. 7(e) fifth 2.67 1.28 1.03
Fig. 7(f) third 3.80 1.29 1.31
Fig. 7(g) fourth 2.20 0.50 0.51
Fig. 7(h) third 1.17 0.42 0.40

using: the 3L algorithm (Fig. 5(a)); the approach proposed
in [10] (Fig. 5(b)); the proposed approach (Fig. 5(c)); and a
non-linear orthogonal distance based approach [16] used as
a ground truth (Fig. 5(d)). The fitting error, computed over
the whole set of points with [16], is used as a quantitative
criterion for comparison. In all the cases the accuracy obtained
with the proposed approach considerably improves the one
obtained with the 3L algorithm, and in most of the cases gives
better results than [10]; actually, it is comparable (in one case
better since the stopping criteria has been reached, see fourth
row) to the results obtained when the non-linear approach is
used. Although out of the scope of the current work, it should
be mentioned that in the 2D case the proposed approach is
about ten times faster than [16]. Finally, another challenging
2D shape defined by two concentric ellipses has been fitted
by a fifth degree IP using the proposed approach; Figure 6(a)
shows the result from the 3L algorithm used as initialization
of the proposed approach. The final result is depicted in Fig.
6(b).

The proposed approach has been also evaluated with 3D
data sets, both synthetic and real data sets were fitted with
low and high degree IPs. On average, in the 3D case, the
proposed approach is not as good as in the 2D case, but it
is about twice faster than [16]. Figure 7 shows eight different
results obtained with the proposed approach; in all the cases
the results are quite similar to the ones obtained with [16],
and considerably better than those obtained with [14]. Table
II presents the Accumulated Fitting Error obtained with the
different approaches for a quantitative comparison. Note that
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AFE = 3.263 AFE = 0.739 AFE = 0.752 AFE = 0.714

AFE = 8.803 AFE = 4.498 AFE = 2.839 AFE = 0.718

AFE = 4.823 AFE = 1.158 AFE = 1.121 AFE = 1.027

AFE = 5.706 AFE = 0.595 AFE = 0.603 AFE = 0.764

AFE = 8.815 AFE = 3.366 AFE = 2.225 AFE = 1.101
(a) (b) (c) (d)

Fig. 5. 2D contours fitted by fifth (1st and 2nd rows) and sixth (3rd, 4th and 5th rows) degree IPs, results from: (a) the 3L algorithm; (b) [10]; (c) proposed
approach; (d) [16], which is used as ground truths. AFE shows the accumulated fitting error respectively. The fourth row shows a case where [16] stops due
to the maximum iteration criterion.

these results were obtained once the stopping criteria has
been reached; if larger number of iterations are allowed,
[16] achieves better results. The proposed algorithm has been
tested with a more challenging 3D data set with a different
topology; Figure 8 presents results from both the 3L algorithm
(AFE=0.06), which is used as an initialization of proposed
approach, and the final result obtained after 10 iterations
(AFE=1.00× 10−4). In this case a fourth degree IP has been
used (solid surface); given data points are represented by
means of a wire frame just for a visual comparison.

In addition to the synthetic objects, a data set from
AIM@SHAPE2 has been used for evaluating the proposed

2http://shapes.aimatshape.net/

approach. Figure 9 shows eight illustrations of fourth, sixth
and seventh degree IPs obtained with the proposed approach.
Table III presents the Accumulated Fitting Error obtained with
the different approaches for a quantitative comparison. Figure
10 illustrates the independence to initial guess by using a
sphere covering the given data set as an initialization (see
Fig. 10(a)). First, second and third iterations of the proposed
approach are shown in Fig. 10(b), (c) and (d) respectively;
result obtained after 25 iterations is already depicted in Fig.
9(a). Surface parameter refinements through these iterations
are depicted in Fig. 11. Figure 11(a) corresponds to the
evolution of the 35 IP coefficients, while Fig. 11(b) shows
how the AFE decreases with the iterations. Finally, Fig. 11(c)
depicts the accumulated angle (23) used as a convergence
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Synthetic data sets fitted with the proposed approach.

TABLE III
DATA SET FROM AIM@SHAPE: AFE CORRESPONDING TO THE

ILLUSTRATIONS PRESENTED IN FIG. 9.

IP 3L alg. Orthogonal Prop.
degree [14] fitting [16] approach

Fig. 9(a) fourth 8.17 5.31 5.37
Fig. 9(b) seventh 6.17 5.76 5.85
Fig. 9(c) seventh 1.07 0.56 0.63
Fig. 9(d) seventh 3.28 1.51 1.68
Fig. 9(e) sixth 3.30 2.32 2.27
Fig. 9(f) fourth 4.57 1.90 1.88
Fig. 9(g) sixth 3.41 2.92 2.94
Fig. 9(h) sixth 7.60 6.61 6.62

criteria. It should be mentioned that this criteria has a similar
behavior than Fig. 11(b) but its complexity is considerably
lower.

V. CONCLUSIONS

This paper presents a novel geometric approach for 2D/3D
implicit polynomial fitting, which is based on a fast geomet-
ric distance estimation. Despite other geometric estimations,
which are based on a single direction to find the foot-point
associated to each data point, the proposed one is based on
two or three directions (depending on the data dimension).
The smoothness and accuracy of the proposed distance have
been shown. Additionally, the implicit connection between
this distance and the IP coefficients has been presented and
shown to be differentiable. This property allows the use of any
gradient based optimization techniques. In the current work
the Levenberg-Marquardt algorithm is applied to find the best
set of surface parameters in an iterative way. Comparisons
with state of the art techniques are presented. Moreover, the

(a) (b)

(c) (d)

Fig. 10. (a) Fitting with a rough initialization. (b), (c) and (d) First, second
and third iterations respectively.

proposed distance is proved to be a generalization of the
distance presented in [10].
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