
Multiple target tracking for intelligent headlights control

Jose C. Rubio, Joan Serrat, Antonio M. López and Daniel Ponsa

Abstract— Intelligent vehicle lighting systems aim at auto-
matically regulate the headlights’ beam angle so as to illuminate
as much of the road ahead as possible, while avoiding dazzling
other drivers. A key component of such a system is a computer
vision software able to distinguish blobs due to vehicles’ head
and rear-lights from those originating from road lamps and
reflective elements like poles and traffic signs. In a previous
work, we have devised a set of specialized supervised classifiers
to make such decisions based on blob features related to its
intensity and shape. Despite the overall good performance,
there remain challenging cases not yet solved which hamper
the adoption of such a system; notably, faint and tiny blobs
corresponding to quite distant vehicles which disapear and
reappear now and then. One reason for the errors in the
classification is that it was carried out independently of other
frames. Hence, we address the problem by tracking blobs in
order to 1) obtain more feature measurements per blob along
its track, 2) compute motion features, which we deem relevant
for the classification and 3) enforce its temporal consistency.
This paper focuses on the problem of constructing blob tracks,
which is actually one of multiple target tracking, but under
special conditions: we have to deal with frequent occlusions as
well as blob splitings and mergings. We approach it in a novel
way, by formulating the problem as a maximum a posteriori
inference on a Markov random field. We present qualitative (in
video form) and quantitative results which show that our new
tracking method achieves good tracking results with regard to
the original objective.

I. INTRODUCTION

Accident statistics demonstrate that driving at night is
considerably more dangerous than its daytime counterpart
[1]. This can be attributed, among other causes, to the
lower performance of the human visual system under poor
ambient lighting conditions: color and depth perception, and
therefore object saliency, are reduced. Some studies like [2]
show that drivers turn on high beams much less frequently
than they can: only about one fourth of the time during
which traffic conditions would justify their use. Among
the reasons for this behavior, we highlight two: the need
for a manual (and eventually, frequent) operation and the
fear of dazzling drivers of leading, oncoming or overtaking
vehicles. Recently, the combination of specialized on-board
cameras, fast processors and machine learning techniques
has enabled some automotive machine vision suppliers and
companies to develop prototypes of ’intelligent headlights’
controllers (IHC) for high-end car series, with acceptable
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Fig. 1. Example of blob tracking along four frames. In red, one–to–one
associations, in blue two occlusions and in green a splitting.

results. However, as we will discuss, this problem is far from
being completely solved.

The core of an IHC is pattern classification software able
to discern bright spots (or image blobs, in computer vision
terminology) originating from vehicles’ head or rearlights
from those due to road lamps, traffic-lights and reflective
infrastructure elements like poles, lane markings and traffic
signs. The main difficulties are due to the requirements
of a low classification error rate, real-time processing and,
perhaps more importantly, the need to detect all vehicles
whithin the image field of view as soon as possible. This
poses a problem in the case of very distant vehicles. Vehicles
are considered distant at 600 meters for oncoming vehicles
and 400 meters for leading vehicles, because of the different
glaring effect of the host vehicle high-beams on their drivers.
At these distances, head/rear-lights are imaged as tiny blobs,
fewer than ten pixels in size, so that appearance features
such as intensity, color and shape do not provide sufficient
information to perform a reliable classification of individual
blobs when frames are examined independently.

The literature on nighttime, on-board, vision-based vehicle



detection is rather scarce. All the works reviewed first
segment the image by some variant of adaptive thresholding,
then perform the classification based on features related to
color, shape, size and image location. The simplest classifica-
tion methods use a set of heuristic rules with fixed thresholds
[3]–[6]. Other works employ machine learning techniques
like decision trees [7], Bayes factors [8], Support Vector
Machines [9]–[12] and Real-AdaBoost [13], [14], which can
be trained and thus possess much greater adaptability. Some
of these works recognize that the classifier outcome is not
sufficiently reliable and that decisions for one blob are not
stable along time. To remedy this, they either track blobs or
pair them as belonging to the same vehicle.

Pairing, or more generally, clustering blobs, helps to better
classify blobs since only those that form a consistent pair,
according to constraints like similar vertical position, size,
shape, color etc., can originate from a vehicle [6]. However,
this is not a convenient strategy if vehicle detection has to
be used for IHC, because the two head or rearlights appear
separated in the images once they are close to the host
vehicle. Hence, distant vehicles would never be reconized
as such. Pairing suits vehicle detection for other driving
assistance applications, like estimation of time to collision
[3]–[5], [8], [12] or automatic cruise control. In these two
cases, the separation of spotlights is necessary to estimate
the distance to other vehicles.

Therefore, tracking seems the only way left for an IHC to
avoid the errors induced by the frame-by-frame independent
classification. Specifically, the potential benefits of tracking
blobs for IHC are its ability to

• increase the number of feature/attribute measurements
of each tracked blob;

• provide the classifier with additional motion features
[6], [9], [10], otherwise not available;

• allow the selection of ’interesting’ blobs which are
passed to the classifier as those that can be followed
during a certain minimum number of frames [7], [8],
[11], [12];

• associate a confidence to the class label of a blob —
high if it is consistent with labels of past frames, low if
not— and make the final classification decision at the
moment its confidence exceeds a certain threshold [13],
[14].

Few works on IHC perform tracking, probably due to its
difficulty in this context. In [7]–[9] a simple nearest neighbor
search is performed, based on image location and appearance
features. This is also done in [6], [10]–[12] with individual
or clusters of blobs, though they first predict the position of
blobs by means of a Kalman filter. In both cases, tracking
refers to associating blobs from one frame to the next. In
[14] proper tracking is replaced by a so-called ’temporal
coherence analysis’ whereby a confidence map is maintained,
quantifying the belief in finding a vehicle blob at each pixel.
This confidence is estimated on the basis of the blob labels at
the frames immediately preceding the current frame. Despite
fostering the temporal coherence of the classification, this

method does not produce blob tracks.
In order to take full advantage of the potential benefits dis-

cussed previously, the tracking algorithm must deal sucess-
fully with blob occlusions, splittings and mergings. Occlu-
sion handling means that blobs which temporally disappear
must not originate new tracks but be associated with their
former track. Splittings occur when a blob corresponding
to the two headlamps of an oncoming vehicle becomes two
distinct blobs as the vehicle approaches. Splittings may also
occur with static reflective surfaces like poles. Merging is
the opposite case: as a leading vehicle (or a compound traffic
sign) gets farther away, two blobs merge into a single one.
These are frequent events in nighttime video sequences, and
are caused by distant vehicles, light sources or reflections
not directed towards the camera and distant, small or poorly
reflective surfaces. In spite of their importance, none of the
reviewed works which perform tracking deals with them.

This paper introduces two main contributions. First, we
focus on the problem of building tracks of close, mid-
distance and far away light sources/reflectors taking into
account occlusions, merges and splits. In particular, we solve
the problem of building continuous tracks in the presence of
occlusions up to a certain duration. Second, we propose a
new probabilistic tracking method whereby the problem is
posed as a maximum a posteriori estimation in a Markov
random field. Associating two blobs from different frames
within a certain time window is represented by a binary
variable whose most probable state, either associated or
not, must be estimated. Once a solution is found for every
association for a time window, we propagate the result to
the next frame by sliding the window. We provide extensive
quantitative evaluations, based on annotations of tracks on
five video sequences. We also include qualitative results in
video form as additional material of this manuscript.

In section II we introduce the probabilistic model. In III,
the estimation propagation within windows is explained, and
in IV we present the inference algorithm used. Finally, in
section V we show the algorithm results, and in VI we draw
conclusions.

II. PROBABILISTIC MULTIPLE FRAME
ASSIGNMENT

Let w be the number of contiguous frames in a certain
temporal window of the video sequence in which we want to
track point features. We denote by I1, I2, ..., Iw the different
frames within it. Each frame contains a set of zero or more
point features, indexed by p, q, ... . An association a is an
ordered pair of features from different frames, a = (p, q),
meaning that features p and q are observations (sensor
measurements) from the same target, but at different frames.
Let A be the set of all such associations,

A = {a = (p, q)|p ∈ Ii, q ∈ Ij , 1 ≤ i < j ≤ w}, (1)

where a, b, ... index the elements of A, so that we can
denote all pairs of association without repeated combinations
as (a, b), a < b. Let X = (...Xa...) be the vector of
binary variables, one per association, where Xa = 1 if the
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Fig. 2. Types of associations involved in the (a,b) likelihood term and (c,d,e) the prior terms. Vertical strips represent frames, circles features and arrows
associations between two features. Dashed ellipses mean neighbour features. Note that (a) and (b) are all possible types of association pairs: in (a) from
top to down, pairs leaving or arriving to neighboring features in the same frame, pairs leaving neighboring features but arriving to features in different
frames, and pairs arriving to neighboring features in the same frame, but leaving from different frames. Also, the last row illustrates a pair where one
association arrives to a feature, which is neighbor of the origin feature of the pairing association. In the last row of (b) pairs sharing a feature either at the
origin, destination or intermediate frame. The constraint Xa + Xb ≤ 1 on the association pairs in (d) precludes other pair possibilities.

corresponding association a exists, and zero otherwise. In the
same way, the vector of all observations is denoted by Y =
(...Ya...), where each association a = (p, q) is represented
by Ya = [px, py, qx, qy, parea, qarea]. Thus, each observation
is a vector of properties: the spatial coordinates and areas
of its origin and destination feature points. Although, other
properties may be also considered, like shape or intensity
measures.

Our goal is to find the most likely configuration of the set
X of association states, given the set of all observations Y.
This is, to find the maximum a posteriori estimation,

X∗ = arg max
X

p(X|Y). (2)

In a Bayesian framework, the posterior probability of the
the hidden variables X, given the observations, is propor-
tional to the product of the likelihood and prior terms

p(X|Y) ∝ p(Y|X)p(X). (3)

The likelihood term p(Y|X) encodes the application spe-
cific observation model. The prior p(X) encodes de appli-
cation restrictions. The next two sections detail how do we
define and compute these two terms.

A. Likelihood

We assume the observation model p(Y|X), factorizes as

p(Y|X) =

[∏
a∈A

pA(Ya|Xa)

]
·

 ∏
(a,b)∈N

pN (Ya, Yb|Xa, Xb)


·

 ∏
(a,b,c,...)∈O

pO(Ya, Yb, Yc, ...|Xa, Xb, Xc, ...)

 . (4)

The first term models the likelihood of an association
being active or inactive, depending on the similarity
(area, location) of the two features (p, q) involved in each
association a ∈ A. The second term is the likelihood of
two associations existing simultaneously. This exploits the

spatial relationships of the observations of two associations,
imposing a local invariance to rotation and translation, and
it is defined over the set N of all association pairs, as will
be explained below. The third component represents the
probability of a feature being occluded, during one or more
frames, defined over the set O, which contains groups of
associations involved in the occlusion of a feature. This
term is needed because it plays the key role of avoiding the
trivial solution Xa = 0 ∀a ∈ A, as we will discuss later.
Next, we describe the probability models for each term of
the factorization of Eq. (4).

Appearance. The displacement of a feature between two
frames and its position are not independent. As the feature
approaches the camera, it moves towards the image left
and right borders, and its apparent velocity increases. In
contrast, it remains motionless when distant, positioned in
the center of the image. Moreover, the feature position has a
direct relationship with its area: the closer a feature is to the
camera, the faster its area changes from one frame to another.
Accordingly, an association a = (p, q) is more probable if
the areas of p and q are similar, and their positions change
as described. We define the probability of associating feature
p with feature q as

pA(Ya|Xa = 1) = f̂1(vpq, px)ĝ1(|parea − qarea|, px)). (5)

pA(Ya|Xa = 0) = f̂0(vpq, px)ĝ0(|parea − qarea|, px)). (6)

f̂1 is a density function modeling the dependency of the
location and the displacement vector vpq of the association a.
The density ĝ1 models the relationship between the original
position of the feature and the frame-to-frame change in the
areas of the features. Analogously, f̂0 and ĝo define the same
correlations for the case of a not existing.

All these probability densities are learned using a Kernel
Density Estimator (KDE) [15]. The expression of f̂ , corre-
sponds to the well known bivariate kernel density estimator



Fig. 3. Example of the different measures used when calculating the
probability components. a) represents the angle and distance used in pG.
b) represents the angle when enforcing linear trajectory in the pM . and
c) represents the module vector when calculating the merging & splitting
compatibility pSM , and the angle against an horizontal reference vector.
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1
hxhy

K

(
x− xi

hx
,
y − yi

hy

)
, (7)

where K is a Gaussian kernel, hx, hy are the bandwidth
components, which are data-driven and automatically se-
lected, and n is the number of training data points.

The term pN is defined over the set N of pairs of
associations,

N = {(a, b) ∈ A×A|a < b}, (8)

corresponding to Fig. 2a and the last row of 2b. The term
pN is responsible for modeling relationships between pairs
of associations. We distinguish three components into which
pN factorizes, which we call Geometry, Motion and Split &
Merge.

pN (Ya, Yb|Xa, Xb) = pG(Ya, Yb|Xa, Xb) (9)
· pM (Ya, Yb|Xa, Xb)pSM (Ya, Yb|Xa, Xb).

Each of these terms defines the likelihood of different
pairs of associations. For instance, two associations in
consecutive frames, as illustrated in the third row of Fig.2b
are involved in the motion likelihood. On the other hand,
two associations like the ones in the first row of Fig.2a
relate to the geometric likelihood.

Geometry. Targets do not move independently of each
other. Two close targets are likely to move in a similar
direction and with a similar speed. This can be seen as a
local isometric mapping of the points from one frame to
another. This means enforcing invariance on the distance
and angles defined by pairs of points. See Figure 3a and
3b. Two associations are probable if the distance between
their origin features is very similar to the distance between
their destination features, and if the angle between the origin
features is similar to the angle between the destination
features.

The likelihood pG is defined over the set of pairs of
features:

NG = {(a, b) ∈ N |a = (p, q), b = (r, s),
q ∈ Np ∨ p ∈ Nq ∨ r ∈ Ns ∨ s ∈ Nr}, (10)

where Np defines the set of neighbors of p, according to
some neighborhood definition. In our case it is the set of k-
nearest features of p, whose distance to it is under a certain
threshold.

Let a = (p, q) and b = (r, s) be two associations of NG,
Xa, Xb their states, and Ya, Yb their respective observations.
Let vpr be the vector between their origin features, and vqs

the vector between the destination features, as shown in Fig.
3 (top). Since we assume these measures to be independent,
we can construct the probability as a convex combination of
Gaussian densities, as follows:

pG(Ya, Yb|Xa = 1, Xb = 1)
= λGN ( ̂vprvqs) + (1− λG)N (|vpr| − |vqs|), (11)

where N (x) represents a normal distribution. For the sake
of readability we represent the gaussians as N (x), instead of
N (x;µ, σ2), for some µ, σ. Thus, we learn their parameters,
µ, σ2 from training data, using the standard method of
maximum likelihood. The parameter λ ∈ [0, 1] weights the
contribution of each term to the mixture of densities. The
first normal distribution measures the similarity between
the orientation of vpr and vqs, and the second enforces the
similarity between |vpr| and |vqs|.

Motion. Close targets tend to follow a linear trajectory
when their position is close enough to the camera, while far
away targets, imaged around the image center, are static or
oscillate up and down due to the movement of the vehicle
where the camera is installed. The set of pairs related to the
motion component correspond to the third pattern of Fig. 2b,
and is defined as

NM = {(a, b) ∈ N |a = (p, q), b = (r, s), q = r}. (12)

Two associations in the motion set NM are probable if,
while close to the camera, the displacement of their features
follow a similar direction. Given two associations a = (p, q)
and b = (q, r) from NM , the likelihood of these associations
existing simultaneously is defined as

pM (Ya, Yb|Xa = 1, Xb = 1) = ĥ( ̂vpqvrs, qx), (13)

where the density ĥ, depends on the angle ̂vpqvrs (3c),
and the horizontal position of the central feature q. This
encourages similarity of the vector directions of pairs of
associations close to the image’s left and right borders.
Again, the correlation defined by ĥ cannot be modeled
by a simple Gaussian. A non-parametric Kernel Density
Estimator is used to learn the density shape from training
data.

Split and Merge. This term models the probability of two
features merging, or one feature splitting in two. Given two



associations a = (p, q) and b = (r, s), a splitting occurs
when p = r, and a merging when q = s. The set of pairs
belonging to the split and merge component follow to the
first and second patterns of Fig. 2b, and is defined as

NSM ={(a, b) ∈ N |a = (p, q), (14)
b = (r, s), (p = r) ∨ (q = s)}.

The merging or splitting features are likely to have similar
areas and to have very close positions. In addition, we
restrict the mergings and splittings to only horizontal or
vertically. This restriction reflects the nature of the merging
and splittings that are originated by road pole reflections
(vertical) or car headlights (horizontal). The probability of
a merging or splitting is defined as

pSM (Ya, Yb|Xa = 1, Xb = 1)
= [λSMN (|vpr|) + (1− λSM )N (|parea − rarea|)]
· N (|π/4− α|). (15)

The first two distributions form a Gaussian mixture,
whose components are weighted by the parameter λSM .
The first demands merging or splitting when the distance
between the targets |vpr| is small, while the other favors
area similarity. Figure 3c shows an example. The angle α
is the angle between vector vqs and a reference horizontal
vector. Hence, the last distribution enforces horizontal and
vertical alignment of the targets which are merging or
splitting.

Occlusions. We say a feature p has been occluded along d
frames when p, being visible in frame Ii, disappears during
d consecutive frames to either appear again in frame Ii+d, or
disappear definitively from the window. Let A(p, d) be the
set of all associations with origin in feature p ∈ Ii, and with
destination features located in frames Ii+1, Ii+2, ..., Ii+d.
This is defined as

A(p, d) = {a = (p, q) ∈ A|p ∈ Ii, q ∈ Ii+k, k = 1...d}.
(16)

The feature p is considered occluded with duration d
when every a ∈ A(p, d) is zero. Therefore, the conditional
probability which models an occlusion depends on all the
associations departing from p and having duration d. The
set of associations which define an occlusion, for all possible
durations within a window of w frames, is

O = {A(p, d)|d = 1...w − 1, i = 1...w − d, p ∈ Ii}. (17)

The probability distribution pO is built around two as-
sumptions. First, the features close to the borders of the im-
age are more likely to disappear. This is due to the movement
of the blobs, which typically appear in the image center, and
then move towards the image borders. Although this does not
always happens, because of leading and overtaking vehicles,
which move faster than ours. Second, tiny features are also
likely to disappear, as a consequence of the segmentation
process. Finally, we encourage features to be associated with

other features belonging to the closest frame possible. Put all
together, for each {a, b, ...} = A(p, d) ∈ O,

pO(Ya, Yb, ...|Xa, Xb, ...)

=
{
î(px, parea)(1− e−d) if Xc = 0 ∀c ∈ A(p, d)

1 otherwise
(18)

The density distribution î models the probability of all
associations coming from a feature p with duration d being
inactive. The term (1 − e−d) favors associations between
features in nearby frames.

Note that if at least one association Xa does exist, pO = 1.
In the same way, every conditional distribution of the terms
pG, pM and pSM explained thus far, with the exception of
the appearance term, depends on a specific realization of the
random variables (Xa = 1, Xb = 1). It is important to notice
that the probability values for the rest of configurations,
(Xa = 0, Xb = 0), (Xa = 0, Xb = 1), and (Xa =
1, Xb = 0) are set to one, which means that the observation
model does not ’penalize’ these realizations. Hence, why the
trivial solution X = (0, ..., 0) is not the most probable?. The
appearance and the occlusion term, are in charge of avoiding
a trivial solution in which every variable state is zero. For
instance, if a feature p is not likely to be occluded in the next
d frames, it will assign a low probability to the configuration
Xa = 0, Xb = 0, ..., where (a, b, ...) ∈ A(p, d).

B. Modeling the Prior

We include a constraint on the maximum number of
features to which one feature can be associated. This may be
used in tracking applications for which we know the bounds
on the number of features involved in splits and merges. This
set of constrains is shown in Fig. 2c. Given two frames Ii,
Ij , from a window of length w, we define what we call the
multi-assignment m-to-n constraint as∑

a∈A(p)

Xa ≤ m,∀p ∈ Ii, i = 1 . . . w − 1 (19)

∑
b∈B(q)

Xb ≤ n, ∀q ∈ Ij , j = 2 . . . w, (20)

where A(p) is the set of associations leaving feature p ∈ Ii
and B(q) the set of those arriving at q ∈ Ij . In our case,
m = n = 2, meaning that we restrict the number of targets
merging or splitting to a maximum of two. For instance,
when headlights or rear-lights merge or split.

Split and merge handling gives rise to two additional sets
of constraints. The first, corresponding to Fig. 2d, comes
from the condition that splits and merges occur in precisely
two frames Ii, Ij . It takes the form

Xa +Xb ≤ 1, (21)

for all pairs (a, b), a < b such that if a = (p, q), b = (r, s)
and i < j < k then either p = r ∈ Ii, q ∈ Ij , s ∈ Ik or
q = p ∈ Ii, r ∈ Ij , s ∈ Ik.

The second set of constraints expresses the assumption that
a merge cannot mix with a split and vice versa, as Figure
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2e illustrates. For features within the same frame, the set of
features involved in a split are disjoint from those involved
in a merge. This takes the form

Xa +Xb +Xc ≤ 2, (22)

where a = (p, q), b = (p, s), c = (t, s) and p, t ∈ Ii, q,
s ∈ Ij , for all 1 ≤ Ii < Ij ≤ w.

Note that all the constraints of Eqs. (19) - (22) have the
form of an upper bound on a linear combination of a few
association variables. Thus, if r is the number of constraints,
all of them can be compactly expressed as CXT ≤ b, where
C = [c1, c2, ..., cr]T is a very sparse binary matrix whose
rows select the variables of each constraint, and b is a column
vector with bounds m, n, 1 and 2. Then, the prior reduces
to

P (X = x) =
{

1 if Cx ≤ b
0 otherwise (23)

III. FROM WINDOW ASSIGNMENT TO SEQUENCE
TRACKS

So far, we have explained how to track features within a
window of w frames. Next, we will see how to extend the
algorithm in order to track long sequences

Every association which originates in the first frame of a
window t, and is set as ’existing’ by the inference algorithm,
is added to the final track results. Doing this, the algorithm
is able to recover every occlusion whose duration is within
the window size. With the aim of recovering the maximum
amount of occlusions possible, the sliding step of the window
is set to one frame. Moreover, all these associations are

introduced as new observations in the next sliding window
t + 1, incorporating inference information from the past
window. The process is repeated up to the last w frames
of the sequence, when all active associations from the last
window are added to the final track result.

Inter-window (IW) information can be easily added to the
probabilistic model, as mentioned earlier, by including the
active associations obtained in window t as observations in
the factor graph of window t+1. This gives rise to a new term
which is included in the likelihood factorization, analogous to
the motion component pM , explained in Eq. (13). This term
enforces linear trajectories in the movement of the features,
but in this case within consecutive windows. It is defined as:

pIW (Ya, Yb|Xb) = pM (Ya, Yb|Xa = 1, Xb). (24)

IV. APPROXIMATE INFERENCE WITH BELIEF
PROPAGATION

Searching for an optimal vector X which maximizes the
expression in Eq. (2) is, in general, NP-hard. In this paper we
use the max-product algorithm to calculate an approximation
of the MAP configuration of the vector of random variables,
on a Markov Random Field formed by the variables Xa,
the observations Ya, for all a ∈ A, and the factor functions
defined by Equations (5) to (23).

The max-product Belief Propagation [16] is a message-
passing algorithm on factor graphs, known to converge
to a fixed point when the graph is a tree. Although the
resulting graph in this work does not have this structure,
as can be seen in Figure 4, several researchers have recently
reported excellent results by running max-product algorithms
on graphs with loops [17]. The running time for Belief
Propagation is O(MNk), where M is the number of random
variables, N is the possible labels for each variable, and
k is the size of the maximum clique (number of variables
involved in a factor). In order to preserve the tractability of
the algorithm, most of the authors keep the size of the cliques
pair-wise, at the expense of expressive power in the variable
dependencies.

In our case, the cliques are the sets of variables involved in
each of the terms explained in section II-A. Therefore, the
bigger cliques correspond to the multiplicity constrains of
Eq. (19) and (20), and their maximum size can be very high,
depending on the amount of features existing in each frame
of the window. To deal with the high dimensionality of these
terms, based on the work of [18] , we take advantage of the
high degree of sparseness of the constraint functions of Eq.
(19) and (20), to transform the high order clique into several
quadratic cliques, by adding extra variables. Analogously, we
apply the same procedure to other high order functions, such
as the occlusions factor of Equation (18).

Figure 4 shows an example of a factor graph resulting
from a window of three frames, displaying only the prior
and occlusion factors. Each box represents a clique, which
corresponds to the probability factors of Eqs. (18) and (19)-
(22). An interesting question at this point is the size of the



graph, in terms of number of variables and factors. Supposing
we have n features at each frame, the graph will have w(w−
1)n2/2 variables which is a huge number. However multiple
tracking problems are inherently sparse: the vast majority of
potential associations are quite unlikely, so that reasonable
application-dependent heuristics (gating) can reduce them to
a manageable size. We have used a simple distance threshold
to discard unfeasible associations which join features that are
very far away from each other.
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Fig. 5. a) shows the relationship between the window size and the size of
the factor graph. b) represents the inference execution time as a function of
the graph size, for different number of iterations

For the MAP inference we have used the C++ implemen-
tation of the max-sum algorithm from the libDAI library
[19]. Processing a sliding temporal window —which is done
for each frame— of 6 frames and 5 features per frame
takes about 700 milliseconds on a 2.66 GHz Intel Core 2
Duo with 4GB of RAM. Figure 5 shows the relationship
between the window size and the execution times. The
running times exposed above are highly dependent on the
number of iterations of the Belief Propagation algorithm,
which is set to 100. Decreasing this number results in lower
execution times, while gracefully degrading the quality of the
results. This let us conclude that by reducing the number of
iterations and keeping a moderate window size, the algorithm
can reach the real time requirements of the application.

V. RESULTS

In this section we present quantitative results of exper-
iments performed on real data. The video sequences were
recorded by a camera with a CMOS image sensor from
Aptima Imaging(TM) of 752× 480 pixels of resolution. The
lens, having a 40◦ angular field of view, makes the detection
of distant taillights very challenging. For instance, a single
taillight at 400 meters is imaged as a spot of 4 to 10 pixels.

Manually annotated ground truth data was used for train-
ing and evaluation of the tracking accuracy. The ground truth
consists of blobs annotated with their corresponding track
label, and contains 51 tracks, 8919 blobs, 54 occlusions,
47 merges and 60 splits. Merging or splitting targets are
annotated in the ground-truth as such when they belong to
the same object. We have trained the likelihood term with
600 frames extracted from 7 different sequences, and tested
the method on 5 of these sequences, but on different frames.
To evaluate the algorithm we have used simple metrics: the
percentage of correctly labeled targets, recovered occlusions,
and merges and splits. To avoid counting the same error
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Fig. 6. Histogram and accumulated histogram of occlusion durations. A
window of size w is able to recover all occlusions with duration up to w−2.

multiple times, a miss-detection of a merging or splitting
is not considered as an incorrect labeling.
For all the experiments we have set parameters λG and λSM

to 0.5. Recall that these parameters weight the contribution
of each term of the mixture of densities for the Geometry and
Split & Merge distributions respectively. A compromise was
made between the length of the window, which dramatically
influences the computation time, and the number of occlu-
sions which can be recovered. We have counted the number
of ground truth occlusions for different durations, as shown
in Figure 6. The window length chosen for the experiments
is 6, which is able to recover every occlusion of up to 4
frames of duration, or 70% of all occlusions.

TABLE I
TRACKING EVALUATION FOR SEQUENCES A TO E

Sequences
metrics in % A B C D E Mean

correct labeling 92 89 94 91 88 90.8
occlusions 60 57 65 71 63 63.2
mergings 36 63 51 47 37 46.8
splittings 68 58 67 59 61 62.6

Table I shows quantitative results of the tracking method.
The percentage of correct labeling is over 90%, which
illustrates the suitability of our method for tracking feature-
less tiny targets. The worst results were obtained for the
detection of merging targets. This is due to the great difficulty
when distinguishing a target which is merging or splitting
from a target which is being occluded, or reappearing. For
example, if two targets are very far from the camera and close
to each other, and in the next frame there is only one target,
it is very difficult, even for a human observer, to determine
if the targets merged, or one of them has been occluded.

The occlusion recovery performs well. The fact that 63.2%
of occlusions are recovered should be analyzed taking into
account the number of occlusions which the method is able
to treat with a window length of 6 frames, which is around
70%. Thus, the percentage of occlusions which are well-
treated among the ones which are tractable is 90%.

We have constructed a web-page [20] where videos of 5
sequences with superimposed tracks can be viewed.



VI. CONCLUSIONS

We have shown that many-to-many feature matching can
be applied to solve the problem of multiple target tracking,
in the presence of target splits, merges and occlusions,
obtaining high accuracy in real video sequences. We have
developed a probabilistic model, in which the densities
representing the application knowledge have been learned
from training data. Tracking bright spots at night is known
to be very challenging, especially for small features whose
images have an area of less than 10 pixels. Our method is
able to correctly track an average of 90% of such small blobs.

The main advantage of our method is its ability to encode
complex relationships between the target characteristics, re-
sulting in a flexible yet powerful model. We have intro-
duced a novel explicit handling of occlusions, merges, and
splits, creating continuous tracks of multiple targets. In IHC
applications, this is necessary to extract multiple features
from a blob along different frames, in order to improve the
classification of difficult targets. However, the method can
be easily extended to generic tracking applications.

Avenues for future research include: First, the merges
and splits failures can be solved by increasing the amount
of training data, and modeling a probability density which
better suits the target behavior. Second, we would like to
evaluate the improvements of the classification of [13], after
incorporating our tracking algorithm.
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