
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 6, NO. 5, SEPTEMBER 2012 437

Multimodal Stereo Vision System: 3D Data
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Fernando Barrera Campo, Felipe Lumbreras Ruiz, and Angel Domingo Sappa, Member, IEEE

Abstract—This paper proposes an imaging system for com-
puting sparse depth maps from multispectral images. A special
stereo head consisting of an infrared and a color camera defines the
proposed multimodal acquisition system. The cameras are rigidly
attached so that their image planes are parallel. Details about
the calibration and image rectification procedure are provided.
Sparse disparity maps are obtained by the combined use of mutual
information enriched with gradient information. The proposed
approach is evaluated using a Receiver Operating Characteristics
curve. Furthermore, a multispectral dataset, color and infrared
images, together with their corresponding ground truth disparity
maps, is generated and used as a test bed. Experimental results in
real outdoor scenarios are provided showing its viability and that
the proposed approach is not restricted to a specific domain.

Index Terms—Color and infrared images, multimodal stereo rig,
sparse 3D maps.

I. INTRODUCTION

T HE coexistence of visible and infrared cam-
eras has opened new perspectives for the development of

multimodal systems. In general, visible and infrared cameras are
used as complementary sensors in applications such as video
surveillance (e.g. [1], [2]) and driver assistance systems (e.g.
[3]). Visible cameras provide information at diurnal scenarios
while infrared cameras are used as night vision sensors. More re-
cently, Near-InfraRed (NIR) and visible images are used under
a common framework to improve the accuracy of the registra-
tion (e.g., [4]). It works by capturing near-infrared and visible
images at the same time using a single sensor. In other words,
every pixel of the 2D image contains information about the red,
green, blue and NIR channels.

All the approaches mentioned above involve registration and
fusion stages, resulting in an image that even though contains
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several channels of information lies in the 2D space. The cur-
rent work goes beyond classical registration and fusion schemes
by formulating the following question: “is it possible to obtain
3D information from a multispectral stereo rig?”. It is clear that
if the objective is to obtain depth maps close to state-of-the-art,
classical binocular stereo systems are more appro-
priated. Therefore, the motivation of current work is to show
that the generation of 3D information from images belonging to
different spectral bands is possible. The proposed multispectral
stereo rig is built with two cameras, which are rigidly mounted
and oriented in the same direction. These cameras work at dif-
ferent spectral bands, while one measure radiation in the visible
band the other one registers infrared radiation. From now on,
this system will be referred to as multimodal stereo head, which
is able to provide a couple of multispectral images.

The role of cameras in the proposed multimodal stereo system
is not only restricted to work in a complementary way (as it is
traditionally) but also in a cooperative fashion, being able to ex-
tract 3D information. This challenge represents a step forward in
the state-of-the-art of 3D multispectral community, and results
obtained from this research by sure can benefit applications in
the driver assistance or video surveillance domains, where the
detection of an object of interest can be enriched with an esti-
mation of its aspect or distance from the cameras.

The performance of a stereo vision algorithm is directly re-
lated to its capacity to find good correspondences (matching) be-
tween pairs of images, this task relies on the similarity function
used to match features. In the multispectral case similarity func-
tions such as: SAD (sum of absolute differences), NCC (nor-
malized cross correlation), SSD (sum of squared differences)
or Census transform cannot be used since a linear correlation
between the data cannot be assumed [5]. In the current work
a non linear similarity function, that establish the relationship
between multispectral images is presented. In other words, it is
able to associate information content between and im-
ages. Through this manuscript and color images will refer
to images obtained by classical color cameras; these terms are
used interchangeably herein.

Multispectral matching has been widely studied in registra-
tion and fusion problems, specially in medical imaging (e.g.,
[6]–[8]). However, there are few research related with the cor-
respondence problem when infrared and color images are con-
sidered. Hence, it is not clear how to exploit visible and infrared
imaging in a combined framework to obtain 3D information.

Most of the stereo heads presented in the literature, and other
commercially available, are built from cameras that have the
same specifications (i.e., sensor and focal length). This choice
constrains the problem and facilitates the reuse of software and
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Fig. 1. Proposed framework: (left) sparse 3D map, over the corresponding �� image, obtained with the proposed approach; (middle) a couple of images from the
�� and color (left camera of Bumblebee) cameras; (right) multispectral stereo head.

published methods. However, the case tackled in the current
work is far more complex since heterogeneous sensors are used,
besides the intrinsic problems due to multimodality. So, the
alignment of two views coming from cameras with different
sensors and intrinsic parameters should be taken into account,
which is more difficult than a classical stereo heads.

The use of multimodal stereo heads has attracted
interest of researchers in different computer vision fields, for
examples: human detection [9], video surveillance [10], and
3D mapping of surface temperature [11], [12]. Recently, [13]
presents a comparison of two stereo systems, one working in
the visible spectrum (composed of two color cameras) and the
other in the infrared spectrum (using two cameras). Since the
study was devoted to pedestrian detection, the authors conclude
that both, color and infrared based stereo, have a similar per-
formance for such a kind of applications. However, in order to
have a more compact system they propose a multimodal trifocal
framework defined by two color cameras and an camera. In
this framework, infrared information is not used for stereoscopy
but just for mapping information over the 3D points com-
puted from the stereo head. This allows to develop ro-
bust approaches for video surveillance applications (e.g., [10]).

On the contrary to the previous approaches, a multimodal
stereo head constructed with just two cameras: an infrared and
a color one is presented in [14]. This minimal configuration is
adopted in the current work since it is the most compact archi-
tecture in terms of hardware and software. Critical issues such
as camera synchronization, control signaling, bandwidth, image
processing, among other have a minimal impact in the overall
performance, and can be easily treated by an acquisition system
such as the one presented in [15]. In Krotosky et al. [14] this
compact multimodal stereo head is used for matching
regions that contain human body silhouettes. Since their contri-
bution is aimed at person tracking some assumptions are ap-
plied, for example a foreground segmentation for disclosing
possible human shapes, which are corresponded by maximizing
mutual information [16]. Although, these assumptions are valid,
they restrict the scope of applications.

A more general solution should be envisaged, allowing such
a kind of multimodal stereo head to be used in different applica-
tions. In other words, the matching should not be constrained to
regions containing human body silhouettes. The current paper
has three main contributions. Firstly, a robust approach that al-
lows to compute sparse depth maps from a multimodal stereo
head is proposed. Since it is not restricted to a specific applica-
tion it can be used in any scenario. The second contribution is

the adaptation to the multispectral case of a recently presented
methodology for comparing and evaluating stereo matching al-
gorithms. This evaluation method has been proposed for clas-
sical stereo heads where both cameras work in the same spec-
tral band [17]. It is based on Receiver Operating Characteris-
tics (ROC) curves that capture both error and sparsity. Finally,
a dataset with and images, together with their corre-
sponding disparity maps and 3D models, is publicly available
for evaluating different approaches. Up to our knowledge there
is not such a kind of dataset in the research community to be
used as a test bed.

Although the proposed approach is motivated for recovering
3D information, optionally it could help to solve other multi-
modal problems. Due to the fact that most existing multimodal
systems are affected by the same problem. That is, statistical in-
dependence between the different modalities, which makes dif-
ficult its correlation. Our approach offers a non-heuristic based
solution, which is a novel feature with respect to state of the art.
The current work presents an approach that reveals the informa-
tion shared by the modalities, and from these correspondences
find the match between blobs or image regions. The latter is rel-
evant for multimodal applications such as moving target detec-
tion, medical imaging, video fusion, among other.

The paper is organized as follows. Section II presents the
multimodal stereo head and the proposed approach for com-
puting sparse depth maps. Section III introduces the adapta-
tion of the evaluation methodology to tackle the multispectral
stereo case. Additionally, it presents in details the multispectral
dataset. Experimental results with different scenarios are pre-
sented in Section IV, together with the technique used for setting
the parameters of the algorithm. Conclusions and final remarks
are detailed in Section V.

II. MULTIMODAL STEREO

This section presents in detail the multimodal stereo head to-
gether with the proposed algorithm for computing sparse 3D
maps. Fig. 1 shows an illustration of the multimodal platform
and a couple of images used to compute a sparse 3D represen-
tation. The different challenges of the tackled problem can be
appreciated in this illustration, from the image acquisition and
depth map estimation to the evaluation of the performance of
the algorithm. The different stages of the proposed multispec-
tral stereo are presented in detail below.
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A. Multimodal Stereo Head

In the current work, a multimodal stereo head with an
camera (PathFindIR from Flir)1 and a color camera is built. The
color camera, by convenience, corresponds to the left camera
of a commercial stereo vision system (Bumblebee, from Point
Grey).2 The Bumblebee stereo head is used for validating the re-
sults and consists of two cameras Sony ICX084 with Bayer pat-
tern CCD sensors, and 6 mm focal length lenses. It is a pre-cal-
ibrated system that does not require in-field calibration. In sum-
mary, two stereo systems coexist (see Fig. 1(right)). The left
camera coordinate system of Bumblebee is used as a reference
system for both stereo heads. In this way, a kind of ground truth
for the depth of each pair of images (infrared and color) is ob-
tained from the Bumblebee stereo head.

The camera, which will be referred just as , detects
radiations in the range 8–14 (long-wavelength infrared),
whereas the color camera, referred to as , responds to wave-
lengths from about 390 to 750 nm (visible spectrum).

B. Calibration and Rectification

The multimodal stereo head has been calibrated using
Bouguet’s toolbox [18]. The main challenge in this stage is to
make visible the calibration pattern in both cameras. In order to
do this, a special metallic checkerboard has been made using
a thin aluminium metallized paper. Black squares over this
surface are generated by means of a laser printer, being able
to detect them from both and cameras. Fig. 2(left)
shows a pair of calibration images ( and color). Despite
of using a metallic calibration pattern, the junctions of black
and white squares are not correctly detected due to thermal
diffusion. Hence, calibration points are extracted using a saddle
point detector, instead of a classical corner detector. In our
particular case the use of saddle points results in a more stable
detection; it is due to the fact that thermal variation between
black and white squares are not enough to generate step edges,
and the structure of junctions looks more like saddle points than
corners [19]. Fig. 3(top) shows three illustrations of junctions
obtained with the saddle point detector; note that even though
the contrast of these infrared images is different the junctions
are correctly detected. Fig. 3(bottom) depicts local structure
indicated by the red windows in Fig. 3(top); the green points
are saddle points while red ones are corners; straight lines show
diagonal directions where their intersection corresponds to
the most likely position of junctions. As can be seen in these
plots, the green points are nearer to the intersections than the
corresponding red ones.

Three independent calibration processes under different tem-
perature were performed to study the robustness of intrinsic pa-
rameters of camera when the saddle point detector is used; as
a result, the obtained intrinsic parameters were stables beside the
changes in temperature. Notice that the IR images in Fig. 3(top)
correspond to one image of those calibration sequences.

Once the and cameras have been calibrated, their in-
trinsic and extrinsic parameters are known, being possible, not
only the image rectification, but also to calculate the disparity

1www.flir.com.
2www.ptgrey.com.

Fig. 2. (top-left) Infrared image of the checkerboard pattern. (top-right) In-
frared rectified image. (bottom-left) Original color image. (bottom-right) Recti-
fied image.

Fig. 3. Saddle points extracted from infrared images of the checkerboard pat-
tern at different temperatures.

map of the scene. The image rectification was done, using the
method proposed in [20], with an accuracy improvement due
to the inclusion of the radial and tangential distortion coeffi-
cients into their camera model. An example of rectified images
is shown in Fig. 2(right).

C. Matching Cost Computation

The definition of a cost function able to find the good
matching between information provided by the and
cameras is a challenging task, due to their poor correlation [21],
[22]. In spite of that, recent works on computational stereo [23]
have shown that mutual information is a nonparametric cost
function able to address nonlinear correlated signals. However,
we have found undesirable behaviors when it is used as a cost
function in the multispectral stereo problem. Mainly, due to its
low capability to distinguish the correct match from a given set
of patterns.

In the current work the problem mentioned above is tackled
by enriching mutual information with gradient information

, although it has been presented in [24] for a template
matching problem, we have used it as a similarity function
for multispectral signals. Additionally, in the current work its
accuracy is improved through a Parzen window estimator with
a Gaussian distribution, as will be described later.

Correspondence search is done as follows. A window
with size wz wz and centered at a point is

selected from the left image. Then, it is compared to a set of
windows extracted from the right image. Thus, a cost
value is obtained for each pair and ,
where is the disparity value that varies between two limits;
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these limits depend on depth of scene . The
cost value mentioned above could have different interpreta-
tions, in the current work it represents the degree of similarity
between the two windows. Similarity is measured by means
of the combination of two functions: mutual information and
gradient information; high cost values represent similarities in
the orientation of gradient vectors and content information.

By definition, mutual information [25] is estimated from
two windows that are extracted from the multispectral images
and preprocessed as follows. Each pixel value inside these win-
dows is scaled to a range [0, 1], and then quantized indepen-
dently into levels. So, mutual information of a pair of pre-
processed windows and is estimated as:

(1)
where and are levels of the quantization; and are
their respective marginal probability mass functions; and
is the joint probability mass function.

The join probability is estimated in two steps. Firstly,
from and a 2D histogram is computed, where every entry
is obtained as follow:

(2)

where is 1 if the argument is true and 0 otherwise; and is
the size of the matching windows (note that both and has
the same size). Next, a Parzen estimator is used following [26]. It
assumes a Gaussian distribution with standard deviation on
every sample in the histogram , which was previously
obtained. Then:

(3)

The rest of probabilities, and , are determined by sum-
ming along each dimension of the previous joint probability (see
[16] for more details).

In this problem the calibration and rectification stages
(Section II-B) have a decisive impact, because not only the
search for correspondences is restricted to one dimension, but
also the contours and edges of the objects contained in the
scene have a similar aspect, therefore increasing its probability
of coincidence. As shown in [22], contours and boundaries are
highly correlated in multispectral images . This is
exploited in the current work to enrich mutual information by
using the formulation presented in [27]. The gradient infor-
mation is obtained by convolving the two-dimensional images
(color and infrared) with a Gaussian derivative kernel of order

:

(4)

where , is the infrared or visible
image, and is the Gaussian derivative kernel of

order . If the Gaussian function is obtained, otherwise its

corresponding derivative kernel. In this section, since only gra-
dient information is required, is computed. is also com-
puted and used for mutual information estimation (1) in a scale
space representation, as will be presented next. It could happens
that gradient vectors appear in both modalities but with a phase
difference near to 0 or (phase or counter-phase) [4]. This fact
is used to unveil possible matchings. So, let and be the co-
ordinates of two corresponding pixels that belong to and
respectively. Then, their phase difference is defined as:

(5)

where is the dot product of their gradient values
in and direction. Following [24] and [27] the phase differ-
ence (5) is weighted by a function that penalizes gradient
vectors that are not in phase or counter-phase:

(6)

The gradient information to be added to the mutual information
is computed as follows:

(7)

Finally, the gradient information is combined with the mutual
information through their product. Although other combinations
are also possible, it has been shown in the literature that for this
kind of multimodal fusion task the product is the best way to
combine them. Furthermore, it does not require a user defined
parameter to weight their contribution (e.g., [24], [27]). Hence,
the product of and has been selected as an aggregation op-
erator. It satisfies the properties of monotonicity, continuity and
stability for linear transformations, while reducing the data into
a unique representative value. Thus, the matching cost of two
blocks: and is given by the next expression:

(8)

D. Cost Aggregation

The matching cost function presented above is used in a scale
space representation scheme. In the current work the scale space
representation contains three levels obtained by convolving the
original images with a Gaussian derivative kernel of different .
Hence, (4) becomes:

(9)

Hereinafter, for a compactness reason, a given level of the scale
space representation is referred to as .

In a given level , and for a pixel , a searching window
centered on it is defined. This window, with a size of (wz
wz), is used to compute the matching cost in its corresponding
searching space. Since rectified images are used this searching
is restricted to a row on the other image. This generates a set of
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values that need to be merged with the values coming from
the other levels of the scale space representation.

The matching cost values computed at different scales are
merged as follow:

(10)

where is the confidence of current .

E. Disparity and Depth Computation

The process of disparity selection consists of two steps. Ini-
tially, the disparities with higher cost values are selected as cor-
rect with a classical winner take all criterion. In these cases,
a correct match is determined by the positions (image coor-
dinate) where the cost function reaches the maximum value:

. The disparity map
obtained after this first step contains several wrong entries due to
regions with low texture or no information. Note that the mul-
tispectral stereo matching case is more complicated than tra-
ditional ones. The latter is due to the fact that, for
instance, an object in the scene could appear textured in the vis-
ible spectrum, while it could have the same temperature all over
its surface, therefore appear as a constant region in the infrared
image, and vice versa.

As mentioned above, it is hard to select the correct between
several candidates with similar scores. Therefore, a second
step to reject mismatching candidates is added. It consists in
labelling as correct those correspondences with a cost score
higher than a given threshold . The selection of this threshold
is based on error rates (see Section III-A). Next, these reliable
matchings are used for bounding the searching space in their
surrounding. As it will be shown in the 3D maps, this helps to
discard wrong matchings.

The parameter is included into our formulation for picking
up only those pixels with large values. Since the
cost function is reliable in textured regions, and those regions
have higher cost, is used as a threshold that split up the
cost map into two groups: i) reliable matches and ii) unreliable
matches. This parameter exploits the correlation between
and edges.

Finally, a quadratic curve is used for a fine estimation of dis-
parity values; this function fits a polynomial to points

and its respective cost values. After computing the
disparity of every point in the images (color and infrared),
their corresponding 3D positions are obtained using
a standard function for triangulation, which is included into the
calibration toolbox [18].

III. EVALUATION

The proposed stereo algorithm has been evaluated by
adapting a technique recently presented for classical
semi-dense stereo matching algorithms. Furthermore, a well
detailed multispectral dataset together with its corresponding
ground truth is proposed. All this material (i.e., multispectral
stereo dataset and ground truth images) is available through
our website3 for an automatic evaluation and comparisons of

3http://www.cvc.uab.es/adas/datasets/cvc-multimodal-stereo.

multispectral stereo algorithms. The next sections describe
the quality metrics used for evaluating the performance of the
proposed multispectral stereo matching algorithm.

A. Evaluation Methodology

In general, stereo algorithms have been evaluated following
the methodology proposed in [28], which has become in a de
facto standard in the stereo community. It presents two quality
measures: i) RMS (root mean squared) error; and ii) percentage
of bad matching pixels. In both cases, resulting disparity maps
are compared to a known ground truth in a dense fashion. How-
ever, in uncontrolled scenarios, as outdoors, trying to get ground
truth data as presented in [29] or [30] is not feasible, for that
reason, we must evaluate our proposed algorithm following a
semi-dense methodology.

The method presented in [17] capture both, error and spar-
sity in a single value, which is suitable for our dataset. So, we
extend this framework to the multispetral case. The pairs: error
and sparsity are plotted in a Receiver Operating Characteris-
tics (ROC) curve as a unique value, letting visualize how per-
formance is affected as more disparity values are taken. Re-
member that every disparity obtained by our method have a
cost value associated, which depends on and . Therefore,
regions with low information (low entropy) or without texture
(gradient) could be rejected considering their cost. During the
evaluation process the best parameter could be easily identi-
fied (see Section II-E).

In the current work, ROC curves have been used for evalu-
ating the performance of the proposed multispectral stereo al-
gorithm (Section II) independently of parameter settings (wz,

, ). The evaluation procedure is briefly detailed below fol-
lowing the original notation. The statistics about the quality of
a semi-dense stereo algorithm should capture both: i) how often
a matching error happens and ii) how often a matching is not
found. These two values define the Error Rate and the
Sparsity Rate respectively. In other words, the repre-
sents the percentage of incorrect correspondences:

(11)

On the other hand, the is defined as the percentage of all
missing correspondences over the set of matchable pixels:

(12)

Note that these values are not computed over the whole set of
pixels but over those pixels with a match in the ground truth. An
illustration of ROC curves, for different scenarios, can be seen
in Fig. 6; they will be explained in the experimental result sec-
tion. In these representations there are four interesting points:
the origin, which represents a dense and perfect matching algo-
rithm; its opposite, where no correct matches are found; the (0,1)
point corresponds to an algorithm that is dense but fully wrong;
and finally, the (1,0) point that corresponds to a disparity map
completely empty.
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Fig. 4. (top-left) Facade image from the proposed dataset overlapped with a
mask from the segmentation. (top-right) Mask of regions with occluded and
no depth information. (bottom) Synthetic 3D representation generated from the
visible stereo pair used as ground truth for evaluating the multispectral depth
map.

B. Multispectral Datasets

A multispectral dataset has been generated for evaluating
the different stages of the proposed algorithms. It contains
multispectral images, ground truth disparity maps and ground
truth depth maps. All this information was obtained as indicated
below.

The dataset consists of four kinds of images, which are classi-
fied by their context and predominant geometry: i) roads; ii) fa-
cades; iii) smooth surfaces; and iv) OSU Color-Thermal dataset.
The first three groups were acquired with the proposed stereo
head and contain outdoor scenarios with one or multiple planes
and smooth surfaces. The latter subset contains perfectly aligned

and color images (i.e., without disparity). It was obtained
from [31] and is publicly available.4 These images are particu-
larly interesting, since they are aligned the ground truth of dis-
parity maps can be approximated by assuming a registration ac-
curacy of about 2 pixels. Fig. 5 shows an illustration of the
whole dataset.

The multispectral stereo images in the dataset have been en-
riched with ground truth disparity maps and ground truth depth
maps semi-automatically generated. These ground truth were
obtained by fitting planes to the 3D data points obtained from
the Bumblebee stereo head. It works as follows. Firstly, a color
image from the left Bumblebee camera is manually segmented
into a set of planar regions (see Fig. 4(top-left)). Planar regions
are easily identified since are the predominant surfaces in the
considered outdoor scenarios. Then, every region is indepen-
dently fitted with a plane using their corresponding 3D data
points, by orthogonal regression using principal components
analysis. Fig. 4(bottom) shows an illustration of the synthetic
3D representation containing different planes. Additionally,
during this semi-automatic ground truth generation process, la-
bels for occluded, valid and unavailable pixels are obtained (see
Fig. 4(top-right)). These labels are needed for the evaluation
methodology (Section III-A).

4http://www.cse.ohio-state.edu/otcbvs-bench/.

Fig. 5. Illustration of the four subsets of images contained in the proposed mul-
tispectral dataset.

Once the 3D planes for a given image are obtained, since they
are referred to the camera, the corresponding data points are
projected to the infrared camera. Thus, a ground truth disparity
map is obtained. The fourth column of Fig. 5 shows some of
these disparity maps and a sparse 3D representation.

In the case of smooth surfaces (e.g., third row in Fig. 5) no
planes are fitted, and depth information provided by Bumblebee
is used as a reference. Bumblebee software offers a trade off be-
tween density and accuracy of data points. Hence, in order to
have a good representation, its parameters have been tuned so
that 3D models are dense enough and contain few noisy data.
Those models should not be considered as ground truth, strictly
speaking, however we use them as a baseline for qualitative
comparisons.

The evaluation by ROC curves compares row by row, a hor-
izontal profile belonging to ground truth disparity map with its
corresponding one obtained by the tested algorithm. A correct
matching is assumed when the difference with respect to the cor-
rect value is smaller than or equal to 1 pixel. Note that only three
sets of images (i.e., roads, facades and OSU) are used for the
evaluation to avoid the problem of occlusion, which is slightly
different in the and stereo rigs. Regarding the
roads dataset, in all the image pairs there is a single plane hence
there are not occluded areas; while in the facades dataset oc-
cluded areas are removed by generating a synthetic 3D model.
Let us remember that OSU dataset was not obtained with our
multispectral stereo rig; it is provided by [31] and contains per-
fectly aligned and images. The smooth surfaces dataset
is not used during the evaluation since the differences between
occluded areas in and stereo rigs could affect
the results. Hence, the smooth surfaces dataset is just used for a
qualitative validation of the proposed approach.

Fig. 4(top-right) shows three kind of regions identified in
our dataset: Occluded; Unavailable (e.g., no textured or too
far/close to the multispectral stereo head); and Valid regions. A
region is valid when depth information is known or is possible to
fit a plane with its defining pixels. Therefore, let be the set of
all pixels in ground truth with disparity information available;
be the occluded regions; be the regions close to an occlusion,
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by definition, this boundary is 5 pixels of wide; and finally,
be the candidate matches obtained by the evaluated algorithm.

Section III-A introduces the concepts of the two error met-
rics, and . Now, they are defined as a function of the
following three terms. The operator is defined as in (2),
and is a point of coordinates, both in the ground truth
as well as in the disparity map obtained by the proposed algo-
rithm. Notice that, ground truth and disparity map are referred
to the same coordinate system; they can be overlapped and their
coordinates are equivalents.

Mismatch (MI): a correspondence with a disparity value dif-
ferent from the ground truth value larger than one pixel:

(13)

this score considers pixels near to occlusions .
False Negative (FN): an unassigned correspondence where

the correct match exists in the ground truth (i.e., a hole):

(14)

False Positive (FP): an assigned correspondence in occluded
areas:

(15)

The ROC space is defined by the above functions, and from them
and are derived; remember that they are used as vertical

and horizontal axis respectively, in the ROC plots.

(16)

where corresponds to the index of valid coordi-
nates and is the number of valid pixels. Finally:

(17)

In the ROC curves presented in Fig. 6, the sparsity rate param-
eter is varied as follows: the cost values of the candidate matches
in are sorted in descending order. Next, from this list, and
by using a decreasing threshold, different values of the ROC
curve are obtained. For instance, the first plotted element in the
ROC curve corresponds to bottom right point, which is the max-
imum cost value achieved only for a few set of pixels. Then, by
decreasing the threshold, all the other points that define the
ROC curve are obtained. In other words, the more pixels are se-
lected reducing the sparsity rate, the larger the resulting error
rate.

IV. EXPERIMENTAL RESULTS

This section presents experimental results obtained with dif-
ferent algorithm settings and scenes. The setting of parameters
is obtained from two optimization steps. The first one is intended
to find the best setting of: i) window size, ii) scale and iii) quan-
tization levels, from the parameter space .
The second optimization step is devoted to find the best con-
fident value used for propagating cost

Fig. 6. Results obtained at different scales and with different settings
(�� ���� ���� ���, �� ���� �� ��� and �� �	� 
�����; as well as their
merging, ����, with the proposed scale space representation).

through consecutive levels ((10)). These two steps have been
implemented as follows.

Firstly, an efficiency measure is defined to be used as
a quantitative value for comparisons between different settings.
Let be the area under the error curve
defined for all in the interval [0, 1], for a given setting of pa-
rameters. The parameter space is sampled in a limited number
of values defining a regular grid. Then, the best setting of param-
eters corresponds to the node of that grid where reaches the
minimum value. Since in the proposed approach a scale space
representation is used, not only the setting with the minimum

value is considered, but the best settings. Note that no
prior information about the number of levels in the scale space
representation is assumed. Hence, the family of parameter set-
tings, with the lowest error, is obtained. This first optimization
step is performed for each subset of the whole dataset. By an-
alyzing the results is possible to find similarities between the
best settings for the images in the evaluation dataset. Thus, it
is possible to find relationships between the elements of the pa-
rameter space, particularly the relationship between the window
size and the quantization level.

Then, the second optimization step finds the best set of
values for merging the costs corresponding to

each of the settings obtained above. Although initially a large
family of settings were considered, we experimentally found
that three levels were enough to propagate the cost through
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Fig. 7. Examples of sparse depth maps from outdoor scenarios (red color in
cost map corresponds to high cost values).

the scale space representation. Hence, this second optimization
process finds the best using a similar approach.

The two optimization steps mentioned above are used to find
the best combination of parameter settings. Initially, an exhaus-
tive search in parameter space is performed. The results are
used to illustrate the behavior of and in each subset of
dataset. Fig. 6 shows the three error curves corresponding to:
road, facade, and OSU color-thermal. These curves depict the
error and sparsity rate when the best settings are used in cost
function, together with the improvement achieved by merging
them . Finally, after finding the best settings for the
whole dataset (including confidence parameters ) sev-
eral sparse depth maps of real outdoor scenarios are presented
(see right columns in Figs. 7 and 8).

The settings of parameters corresponding to the ROC
curves presented in Fig. 6 were found with an exhaus-
tive search in the following ranges: ,

and . The obtained
best set of parameters and propagation scheme is the following:

, where ,
and . In our proposal, the

windows sizes (wz parameter) decreases from 31 to 7 pixels,
which looks like an inverted pyramid. This is to avoid smooth
disparity maps, specially on edges, contours and boundaries,
since the smaller windows (7 7) contributes in the last
stage. On the other hand, we observed that information content
decreases with scale, as previously reported in [32], but in our
case faster at . So, greater than this value decreases
the correct matching score. This is due to the fact that gradient
is not enough discriminative ( in (7)), and the windows tend

Fig. 8. Examples of sparse depth maps from outdoor scenarios (red color in
cost map corresponds to high cost values).

to have low entropies ( in (1)). Therefore, the propagation
of costs should be done with appropriate parameters since a
wrong setting could increase the error rate. Regarding , the
best settings, for the above parameter space ,

is as follow .
At this point, we must distinguish between coming from

the discrete version (2) and its smooth version obtained from
(3). The difference lies in how the joint probability is es-
timated. When the discrete joint probability is used, results in
a wave-like curve difficult to minimize. On the contrary, when
the smooth is considered a better behaved function is ob-
tained, which helps us to find stable parameters. Parzen window
estimation is done using three different Gaussian kernels (see
(3)): for ; for ; and

for .
As a conclusion from the plots presented above we can men-

tion that the best result is obtained when the is used. Im-
proving the result at each stage, in a coarse to fine scheme. On
average a 20% of correct matches, with less than 10% of ,
can be obtained with the proposed approach and by setting the
parameters as indicated above. Another conclusion from Fig. 6
is that for a given sparsity rate always the best results (lowest
error rate) is obtained after merging with the proposed scale
space representation .

Figs. 7 and 8 show the results obtained with the pro-
posed method. First and second columns correspond to
the rectified images, visible and infrared spectrum re-
spectively. Third column presents cost maps obtained
after applying disparity selection method explained in
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Section II-E. Each pixel in this representation corresponds
to the maximum value for a given that maximize

. Finally, the fourth
column depicts the 3D sparse depth maps obtained from
the correct matches. Sparse maps show how the multimodal
correspondence between and can provide useful 3D
information. Notice that the complexity of images used for vali-
dating the proposed approach, is also a challenge for a
stereo algorithm. However, the obtained results demonstrate
the capability of our approach for finding correspondences in
a wide range of radiometric differences, such as uncontrolled
lighting conditions (sources), vignetting and shadows. Further-
more, the experimental results correspond to outdoor scenes
with non-Lambertian surfaces and weakly textured regions.
The construction of such a challenging dataset is motivated to
push the limits of this novel technique, and provide insights of
its application and research trends.

The results shown in the tables must be understood beyond
the sparseness of 3D representations, or the accuracy with which
the contours are recovered. For example, notice that the vehi-
cles in the IR images appear quite poor textured, whereas in
the VS images they appear textureless, however our approach
can overcome this situation and provides a depth map free of
mismatches over those regions (the same for the contrary case).
This is consequence of the manner in which mutual and gra-
dient information are combined. Thus, the multiplication of
and reaches its maximum when a given correspondence is
weighted as a correct one by both and cost functions (8).
A more dense representation could be obtained by relaxing the

threshold, but it will be affected by noisy data. Actually, this
is a common trade off in stereo vision systems. It should be no-
ticed that 3D representations presented in Fig. 7 and Fig. 8 pro-
vides not only the and color components , as
classical stereo systems, but also the thermal information corre-
sponding to every 3D point.

The cost maps presented in Fig. 7 and Fig. 8 show that, in gen-
eral, the similarity function introduced in Section II-D and II-C
can match a window with extracted from a multispectral
image pair with different accuracy. Our algorithm is designed
to identify regions with high information content, such as edges
and contours, and from them to obtain a 3D representation of the
scene. Also, it penalizes mismatches in textureless areas, which
are not reliable to find correspondences, for instance in image
regions such as walls and floor. As can be appreciated on Fig. 7
and Fig. 8 (third column), higher cost values are concentrated on
the edges, since in those regions a consensus between and is
reached. Furthermore, it is possible to perceive the structure of
the scene from these cost maps, which confirms the importance
of discontinuities for relieving the ill-posedness of multimodal
stereo. The strategy of cost propagation across a scale space rep-
resentation enriches the , allowing to identify the correct
disparity of a candidate set (Section II-E).

As a result from this section we can appreciate that although
the current work is focused on recovering 3D information, we
have confirmed that the cost function overcomes mutual
information and gradient-based approaches in multimodal tem-
plate matching problems. This conclusion is supported by re-
viewing previous work [24], which uses a similar cost function.

Since both evaluations (the current and previous one) use the
same database (OSU Color-Thermal dataset [33]), we conclude
that is a valid similarity function for searching correspon-
dences in multimodal video sequences. This conclusion could
be also extended to the multimodal pedestrian tracking and de-
tection problem. The previous statement is motivated by the fact
that the work of Krotosky et al. (e.g., [10], [13]) is based only
on the use of mutual information as a similarity function for
matching pedestrian regions.

Finally, regarding the question formulated in Section I: “is it
possible to obtain 3D information from a multispectral stereo
rig?”, we can say with safety that it is possible and it represents
a promising research topic with several open issues.

V. CONCLUSIONS AND FINAL REMARKS

This paper presents a novel multimodal stereo rig build with a
color and an infrared camera. The different stages for obtaining
sparse depth maps are described. Furthermore, a ROC-based
evaluation methodology is proposed for evaluating results from
such a kind of multispectral stereo heads. It allows to analyze
the behavior over a wide range of different parameter settings.
Although the obtained results show a sparse representation, we
should have in mind the challenge of finding correspondences
in between these two separated spectral bands.

In summary, the main contributions of the current work are:
(i) to present a study in an emerging topic as Multimodal Stereo

and achieves a sparse 3D representation from images
coming from heterogeneous information sources; (ii) to propose
a consistent criteria for making the multimodal correspondence;
(iii) to establish a baseline for future comparisons; and (iv) to
propose a framework that can be used as a test bed for evaluation
purposes in this field.

Future work will be mainly focused on two aspects: (i) im-
proving the disparity selection process by including Markov
Random Fields, which allows to consider prior knowledge of
the scene; and (ii) reformulating ((8)) as a combination
of two individual cost functions, which convert the cost func-
tion from a consensus scheme to a scheme where and con-
tributes to a final matching score according to a set of assign-
ment weights.
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