|
Records |
Links |
|
Author |
Naveen Onkarappa; Angel Sappa |
|
|
Title |
Synthetic sequences and ground-truth flow field generation for algorithm validation |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Multimedia Tools and Applications |
Abbreviated Journal |
MTAP |
|
|
Volume |
74 |
Issue |
9 |
Pages |
3121-3135 |
|
|
Keywords |
Ground-truth optical flow; Synthetic sequence; Algorithm validation |
|
|
Abstract |
Research in computer vision is advancing by the availability of good datasets that help to improve algorithms, validate results and obtain comparative analysis. The datasets can be real or synthetic. For some of the computer vision problems such as optical flow it is not possible to obtain ground-truth optical flow with high accuracy in natural outdoor real scenarios directly by any sensor, although it is possible to obtain ground-truth data of real scenarios in a laboratory setup with limited motion. In this difficult situation computer graphics offers a viable option for creating realistic virtual scenarios. In the current work we present a framework to design virtual scenes and generate sequences as well as ground-truth flow fields. Particularly, we generate a dataset containing sequences of driving scenarios. The sequences in the dataset vary in different speeds of the on-board vision system, different road textures, complex motion of vehicle and independent moving vehicles in the scene. This dataset enables analyzing and adaptation of existing optical flow methods, and leads to invention of new approaches particularly for driver assistance systems. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer US |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1380-7501 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.055; 601.215; 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @ OnS2014b |
Serial |
2472 |
|
Permanent link to this record |
|
|
|
|
Author |
J.S. Cope; P.Remagnino; S.Mannan; Katerine Diaz; Francesc J. Ferri; P.Wilkin |
|
|
Title |
Reverse Engineering Expert Visual Observations: From Fixations To The Learning Of Spatial Filters With A Neural-Gas Algorithm |
Type |
Journal Article |
|
Year |
2013 |
Publication |
Expert Systems with Applications |
Abbreviated Journal |
EXWA |
|
|
Volume |
40 |
Issue |
17 |
Pages |
6707-6712 |
|
|
Keywords |
Neural gas; Expert vision; Eye-tracking; Fixations |
|
|
Abstract |
Human beings can become experts in performing specific vision tasks, for example, doctors analysing medical images, or botanists studying leaves. With sufficient knowledge and experience, people can become very efficient at such tasks. When attempting to perform these tasks with a machine vision system, it would be highly beneficial to be able to replicate the process which the expert undergoes. Advances in eye-tracking technology can provide data to allow us to discover the manner in which an expert studies an image. This paper presents a first step towards utilizing these data for computer vision purposes. A growing-neural-gas algorithm is used to learn a set of Gabor filters which give high responses to image regions which a human expert fixated on. These filters can then be used to identify regions in other images which are likely to be useful for a given vision task. The algorithm is evaluated by learning filters for locating specific areas of plant leaves. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0957-4174 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ CRM2013 |
Serial |
2438 |
|
Permanent link to this record |
|
|
|
|
Author |
Jiaolong Xu; Sebastian Ramos; David Vazquez; Antonio Lopez |
|
|
Title |
Domain Adaptation of Deformable Part-Based Models |
Type |
Journal Article |
|
Year |
2014 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
TPAMI |
|
|
Volume |
36 |
Issue |
12 |
Pages |
2367-2380 |
|
|
Keywords |
Domain Adaptation; Pedestrian Detection |
|
|
Abstract |
The accuracy of object classifiers can significantly drop when the training data (source domain) and the application scenario (target domain) have inherent differences. Therefore, adapting the classifiers to the scenario in which they must operate is of paramount importance. We present novel domain adaptation (DA) methods for object detection. As proof of concept, we focus on adapting the state-of-the-art deformable part-based model (DPM) for pedestrian detection. We introduce an adaptive structural SVM (A-SSVM) that adapts a pre-learned classifier between different domains. By taking into account the inherent structure in feature space (e.g., the parts in a DPM), we propose a structure-aware A-SSVM (SA-SSVM). Neither A-SSVM nor SA-SSVM needs to revisit the source-domain training data to perform the adaptation. Rather, a low number of target-domain training examples (e.g., pedestrians) are used. To address the scenario where there are no target-domain annotated samples, we propose a self-adaptive DPM based on a self-paced learning (SPL) strategy and a Gaussian Process Regression (GPR). Two types of adaptation tasks are assessed: from both synthetic pedestrians and general persons (PASCAL VOC) to pedestrians imaged from an on-board camera. Results show that our proposals avoid accuracy drops as high as 15 points when comparing adapted and non-adapted detectors. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0162-8828 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.057; 600.054; 601.217; 600.076 |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ XRV2014b |
Serial |
2436 |
|
Permanent link to this record |
|
|
|
|
Author |
Jiaolong Xu; David Vazquez; Antonio Lopez; Javier Marin; Daniel Ponsa |
|
|
Title |
Learning a Part-based Pedestrian Detector in Virtual World |
Type |
Journal Article |
|
Year |
2014 |
Publication |
IEEE Transactions on Intelligent Transportation Systems |
Abbreviated Journal |
TITS |
|
|
Volume |
15 |
Issue |
5 |
Pages |
2121-2131 |
|
|
Keywords |
Domain Adaptation; Pedestrian Detection; Virtual Worlds |
|
|
Abstract |
Detecting pedestrians with on-board vision systems is of paramount interest for assisting drivers to prevent vehicle-to-pedestrian accidents. The core of a pedestrian detector is its classification module, which aims at deciding if a given image window contains a pedestrian. Given the difficulty of this task, many classifiers have been proposed during the last fifteen years. Among them, the so-called (deformable) part-based classifiers including multi-view modeling are usually top ranked in accuracy. Training such classifiers is not trivial since a proper aspect clustering and spatial part alignment of the pedestrian training samples are crucial for obtaining an accurate classifier. In this paper, first we perform automatic aspect clustering and part alignment by using virtual-world pedestrians, i.e., human annotations are not required. Second, we use a mixture-of-parts approach that allows part sharing among different aspects. Third, these proposals are integrated in a learning framework which also allows to incorporate real-world training data to perform domain adaptation between virtual- and real-world cameras. Overall, the obtained results on four popular on-board datasets show that our proposal clearly outperforms the state-of-the-art deformable part-based detector known as latent SVM. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1931-0587 |
ISBN |
978-1-4673-2754-1 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.076 |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ XVL2014 |
Serial |
2433 |
|
Permanent link to this record |
|
|
|
|
Author |
Naveen Onkarappa; Angel Sappa |
|
|
Title |
Speed and Texture: An Empirical Study on Optical-Flow Accuracy in ADAS Scenarios |
Type |
Journal Article |
|
Year |
2014 |
Publication |
IEEE Transactions on Intelligent Transportation Systems |
Abbreviated Journal |
TITS |
|
|
Volume |
15 |
Issue |
1 |
Pages |
136-147 |
|
|
Keywords |
|
|
|
Abstract |
IF: 3.064
Increasing mobility in everyday life has led to the concern for the safety of automotives and human life. Computer vision has become a valuable tool for developing driver assistance applications that target such a concern. Many such vision-based assisting systems rely on motion estimation, where optical flow has shown its potential. A variational formulation of optical flow that achieves a dense flow field involves a data term and regularization terms. Depending on the image sequence, the regularization has to appropriately be weighted for better accuracy of the flow field. Because a vehicle can be driven in different kinds of environments, roads, and speeds, optical-flow estimation has to be accurately computed in all such scenarios. In this paper, we first present the polar representation of optical flow, which is quite suitable for driving scenarios due to the possibility that it offers to independently update regularization factors in different directional components. Then, we study the influence of vehicle speed and scene texture on optical-flow accuracy. Furthermore, we analyze the relationships of these specific characteristics on a driving scenario (vehicle speed and road texture) with the regularization weights in optical flow for better accuracy. As required by the work in this paper, we have generated several synthetic sequences along with ground-truth flow fields. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1524-9050 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @ OnS2014a |
Serial |
2386 |
|
Permanent link to this record |
|
|
|
|
Author |
Jaume Amores |
|
|
Title |
MILDE: multiple instance learning by discriminative embedding |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Knowledge and Information Systems |
Abbreviated Journal |
KAIS |
|
|
Volume |
42 |
Issue |
2 |
Pages |
381-407 |
|
|
Keywords |
Multi-instance learning; Codebook; Bag of words |
|
|
Abstract |
While the objective of the standard supervised learning problem is to classify feature vectors, in the multiple instance learning problem, the objective is to classify bags, where each bag contains multiple feature vectors. This represents a generalization of the standard problem, and this generalization becomes necessary in many real applications such as drug activity prediction, content-based image retrieval, and others. While the existing paradigms are based on learning the discriminant information either at the instance level or at the bag level, we propose to incorporate both levels of information. This is done by defining a discriminative embedding of the original space based on the responses of cluster-adapted instance classifiers. Results clearly show the advantage of the proposed method over the state of the art, where we tested the performance through a variety of well-known databases that come from real problems, and we also included an analysis of the performance using synthetically generated data. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer London |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0219-1377 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 601.042; 600.057; 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @ Amo2015 |
Serial |
2383 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Pere de las Heras; Ahmed Sheraz; Marcus Liwicki; Ernest Valveny; Gemma Sanchez |
|
|
Title |
Statistical Segmentation and Structural Recognition for Floor Plan Interpretation |
Type |
Journal Article |
|
Year |
2014 |
Publication |
International Journal on Document Analysis and Recognition |
Abbreviated Journal |
IJDAR |
|
|
Volume |
17 |
Issue |
3 |
Pages |
221-237 |
|
|
Keywords |
|
|
|
Abstract |
A generic method for floor plan analysis and interpretation is presented in this article. The method, which is mainly inspired by the way engineers draw and interpret floor plans, applies two recognition steps in a bottom-up manner. First, basic building blocks, i.e., walls, doors, and windows are detected using a statistical patch-based segmentation approach. Second, a graph is generated, and structural pattern recognition techniques are applied to further locate the main entities, i.e., rooms of the building. The proposed approach is able to analyze any type of floor plan regardless of the notation used. We have evaluated our method on different publicly available datasets of real architectural floor plans with different notations. The overall detection and recognition accuracy is about 95 %, which is significantly better than any other state-of-the-art method. Our approach is generic enough such that it could be easily adopted to the recognition and interpretation of any other printed machine-generated structured documents. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1433-2833 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; ADAS; 600.076; 600.077 |
Approved |
no |
|
|
Call Number |
HSL2014 |
Serial |
2370 |
|
Permanent link to this record |
|
|
|
|
Author |
Fahad Shahbaz Khan; Muhammad Anwer Rao; Joost Van de Weijer; Andrew Bagdanov; Antonio Lopez; Michael Felsberg |
|
|
Title |
Coloring Action Recognition in Still Images |
Type |
Journal Article |
|
Year |
2013 |
Publication |
International Journal of Computer Vision |
Abbreviated Journal |
IJCV |
|
|
Volume |
105 |
Issue |
3 |
Pages |
205-221 |
|
|
Keywords |
|
|
|
Abstract |
In this article we investigate the problem of human action recognition in static images. By action recognition we intend a class of problems which includes both action classification and action detection (i.e. simultaneous localization and classification). Bag-of-words image representations yield promising results for action classification, and deformable part models perform very well object detection. The representations for action recognition typically use only shape cues and ignore color information. Inspired by the recent success of color in image classification and object detection, we investigate the potential of color for action classification and detection in static images. We perform a comprehensive evaluation of color descriptors and fusion approaches for action recognition. Experiments were conducted on the three datasets most used for benchmarking action recognition in still images: Willow, PASCAL VOC 2010 and Stanford-40. Our experiments demonstrate that incorporating color information considerably improves recognition performance, and that a descriptor based on color names outperforms pure color descriptors. Our experiments demonstrate that late fusion of color and shape information outperforms other approaches on action recognition. Finally, we show that the different color–shape fusion approaches result in complementary information and combining them yields state-of-the-art performance for action classification. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer US |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0920-5691 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
CIC; ADAS; 600.057; 600.048 |
Approved |
no |
|
|
Call Number |
Admin @ si @ KRW2013 |
Serial |
2285 |
|
Permanent link to this record |
|
|
|
|
Author |
David Vazquez; Javier Marin; Antonio Lopez; Daniel Ponsa; David Geronimo |
|
|
Title |
Virtual and Real World Adaptation for Pedestrian Detection |
Type |
Journal Article |
|
Year |
2014 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
TPAMI |
|
|
Volume |
36 |
Issue |
4 |
Pages |
797-809 |
|
|
Keywords |
Domain Adaptation; Pedestrian Detection |
|
|
Abstract |
Pedestrian detection is of paramount interest for many applications. Most promising detectors rely on discriminatively learnt classifiers, i.e., trained with annotated samples. However, the annotation step is a human intensive and subjective task worth to be minimized. By using virtual worlds we can automatically obtain precise and rich annotations. Thus, we face the question: can a pedestrian appearance model learnt in realistic virtual worlds work successfully for pedestrian detection in realworld images?. Conducted experiments show that virtual-world based training can provide excellent testing accuracy in real world, but it can also suffer the dataset shift problem as real-world based training does. Accordingly, we have designed a domain adaptation framework, V-AYLA, in which we have tested different techniques to collect a few pedestrian samples from the target domain (real world) and combine them with the many examples of the source domain (virtual world) in order to train a domain adapted pedestrian classifier that will operate in the target domain. V-AYLA reports the same detection accuracy than when training with many human-provided pedestrian annotations and testing with real-world images of the same domain. To the best of our knowledge, this is the first work demonstrating adaptation of virtual and real worlds for developing an object detector. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0162-8828 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.057; 600.054; 600.076 |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ VML2014 |
Serial |
2275 |
|
Permanent link to this record |
|
|
|
|
Author |
Jaume Amores |
|
|
Title |
Multiple Instance Classification: review, taxonomy and comparative study |
Type |
Journal Article |
|
Year |
2013 |
Publication |
Artificial Intelligence |
Abbreviated Journal |
AI |
|
|
Volume |
201 |
Issue |
|
Pages |
81-105 |
|
|
Keywords |
Multi-instance learning; Codebook; Bag-of-Words |
|
|
Abstract |
Multiple Instance Learning (MIL) has become an important topic in the pattern recognition community, and many solutions to this problemhave been proposed until now. Despite this fact, there is a lack of comparative studies that shed light into the characteristics and behavior of the different methods. In this work we provide such an analysis focused on the classification task (i.e.,leaving out other learning tasks such as regression). In order to perform our study, we implemented
fourteen methods grouped into three different families. We analyze the performance of the approaches across a variety of well-known databases, and we also study their behavior in synthetic scenarios in order to highlight their characteristics. As a result of this analysis, we conclude that methods that extract global bag-level information show a clearly superior performance in general. In this sense, the analysis permits us to understand why some types of methods are more successful than others, and it permits us to establish guidelines in the design of new MIL
methods. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier Science Publishers Ltd. Essex, UK |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0004-3702 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 601.042; 600.057 |
Approved |
no |
|
|
Call Number |
Admin @ si @ Amo2013 |
Serial |
2273 |
|
Permanent link to this record |