|
Records |
Links |
|
Author |
Katerine Diaz; Jesus Martinez del Rincon; Aura Hernandez-Sabate |
![download PDF file pdf](http://refbase.cvc.uab.es/img/file_PDF.gif)
![find record details (via OpenURL) openurl](http://refbase.cvc.uab.es/img/xref.gif)
|
|
Title |
Decremental generalized discriminative common vectors applied to images classification |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Knowledge-Based Systems |
Abbreviated Journal |
KBS |
|
|
Volume |
131 |
Issue |
|
Pages |
46-57 |
|
|
Keywords ![sorted by Keywords field, ascending order (up)](http://refbase.cvc.uab.es/img/sort_asc.gif) |
Decremental learning; Generalized Discriminative Common Vectors; Feature extraction; Linear subspace methods; Classification |
|
|
Abstract |
In this paper, a novel decremental subspace-based learning method called Decremental Generalized Discriminative Common Vectors method (DGDCV) is presented. The method makes use of the concept of decremental learning, which we introduce in the field of supervised feature extraction and classification. By efficiently removing unnecessary data and/or classes for a knowledge base, our methodology is able to update the model without recalculating the full projection or accessing to the previously processed training data, while retaining the previously acquired knowledge. The proposed method has been validated in 6 standard face recognition datasets, showing a considerable computational gain without compromising the accuracy of the model. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.118; 600.121;IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ DMH2017a |
Serial |
3003 |
|
Permanent link to this record |
|
|
|
|
Author |
Jiaolong Xu; Sebastian Ramos; David Vazquez; Antonio Lopez |
![download PDF file pdf](http://refbase.cvc.uab.es/img/file_PDF.gif)
![find record details (via OpenURL) openurl](http://refbase.cvc.uab.es/img/xref.gif)
|
|
Title |
Domain Adaptation of Deformable Part-Based Models |
Type |
Journal Article |
|
Year |
2014 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
TPAMI |
|
|
Volume |
36 |
Issue |
12 |
Pages |
2367-2380 |
|
|
Keywords ![sorted by Keywords field, ascending order (up)](http://refbase.cvc.uab.es/img/sort_asc.gif) |
Domain Adaptation; Pedestrian Detection |
|
|
Abstract |
The accuracy of object classifiers can significantly drop when the training data (source domain) and the application scenario (target domain) have inherent differences. Therefore, adapting the classifiers to the scenario in which they must operate is of paramount importance. We present novel domain adaptation (DA) methods for object detection. As proof of concept, we focus on adapting the state-of-the-art deformable part-based model (DPM) for pedestrian detection. We introduce an adaptive structural SVM (A-SSVM) that adapts a pre-learned classifier between different domains. By taking into account the inherent structure in feature space (e.g., the parts in a DPM), we propose a structure-aware A-SSVM (SA-SSVM). Neither A-SSVM nor SA-SSVM needs to revisit the source-domain training data to perform the adaptation. Rather, a low number of target-domain training examples (e.g., pedestrians) are used. To address the scenario where there are no target-domain annotated samples, we propose a self-adaptive DPM based on a self-paced learning (SPL) strategy and a Gaussian Process Regression (GPR). Two types of adaptation tasks are assessed: from both synthetic pedestrians and general persons (PASCAL VOC) to pedestrians imaged from an on-board camera. Results show that our proposals avoid accuracy drops as high as 15 points when comparing adapted and non-adapted detectors. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0162-8828 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.057; 600.054; 601.217; 600.076 |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ XRV2014b |
Serial |
2436 |
|
Permanent link to this record |
|
|
|
|
Author |
David Vazquez; Javier Marin; Antonio Lopez; Daniel Ponsa; David Geronimo |
![download PDF file pdf](http://refbase.cvc.uab.es/img/file_PDF.gif)
![find record details (via OpenURL) openurl](http://refbase.cvc.uab.es/img/xref.gif)
|
|
Title |
Virtual and Real World Adaptation for Pedestrian Detection |
Type |
Journal Article |
|
Year |
2014 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
TPAMI |
|
|
Volume |
36 |
Issue |
4 |
Pages |
797-809 |
|
|
Keywords ![sorted by Keywords field, ascending order (up)](http://refbase.cvc.uab.es/img/sort_asc.gif) |
Domain Adaptation; Pedestrian Detection |
|
|
Abstract |
Pedestrian detection is of paramount interest for many applications. Most promising detectors rely on discriminatively learnt classifiers, i.e., trained with annotated samples. However, the annotation step is a human intensive and subjective task worth to be minimized. By using virtual worlds we can automatically obtain precise and rich annotations. Thus, we face the question: can a pedestrian appearance model learnt in realistic virtual worlds work successfully for pedestrian detection in realworld images?. Conducted experiments show that virtual-world based training can provide excellent testing accuracy in real world, but it can also suffer the dataset shift problem as real-world based training does. Accordingly, we have designed a domain adaptation framework, V-AYLA, in which we have tested different techniques to collect a few pedestrian samples from the target domain (real world) and combine them with the many examples of the source domain (virtual world) in order to train a domain adapted pedestrian classifier that will operate in the target domain. V-AYLA reports the same detection accuracy than when training with many human-provided pedestrian annotations and testing with real-world images of the same domain. To the best of our knowledge, this is the first work demonstrating adaptation of virtual and real worlds for developing an object detector. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0162-8828 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.057; 600.054; 600.076 |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ VML2014 |
Serial |
2275 |
|
Permanent link to this record |
|
|
|
|
Author |
Jiaolong Xu; Sebastian Ramos; David Vazquez; Antonio Lopez |
![download PDF file pdf](http://refbase.cvc.uab.es/img/file_PDF.gif)
![find record details (via OpenURL) openurl](http://refbase.cvc.uab.es/img/xref.gif)
|
|
Title |
Hierarchical Adaptive Structural SVM for Domain Adaptation |
Type |
Journal Article |
|
Year |
2016 |
Publication |
International Journal of Computer Vision |
Abbreviated Journal |
IJCV |
|
|
Volume |
119 |
Issue |
2 |
Pages |
159-178 |
|
|
Keywords ![sorted by Keywords field, ascending order (up)](http://refbase.cvc.uab.es/img/sort_asc.gif) |
Domain Adaptation; Pedestrian Detection |
|
|
Abstract |
A key topic in classification is the accuracy loss produced when the data distribution in the training (source) domain differs from that in the testing (target) domain. This is being recognized as a very relevant problem for many
computer vision tasks such as image classification, object detection, and object category recognition. In this paper, we present a novel domain adaptation method that leverages multiple target domains (or sub-domains) in a hierarchical adaptation tree. The core idea is to exploit the commonalities and differences of the jointly considered target domains.
Given the relevance of structural SVM (SSVM) classifiers, we apply our idea to the adaptive SSVM (A-SSVM), which only requires the target domain samples together with the existing source-domain classifier for performing the desired adaptation. Altogether, we term our proposal as hierarchical A-SSVM (HA-SSVM).
As proof of concept we use HA-SSVM for pedestrian detection, object category recognition and face recognition. In the former we apply HA-SSVM to the deformable partbased model (DPM) while in the rest HA-SSVM is applied to multi-category classifiers. We will show how HA-SSVM is effective in increasing the detection/recognition accuracy with respect to adaptation strategies that ignore the structure of the target data. Since, the sub-domains of the target data are not always known a priori, we shown how HA-SSVM can incorporate sub-domain discovery for object category recognition. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer US |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0920-5691 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.085; 600.082; 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @ XRV2016 |
Serial |
2669 |
|
Permanent link to this record |
|
|
|
|
Author |
Jiaolong Xu; David Vazquez; Antonio Lopez; Javier Marin; Daniel Ponsa |
![download PDF file pdf](http://refbase.cvc.uab.es/img/file_PDF.gif)
![find book details (via ISBN) isbn](http://refbase.cvc.uab.es/img/isbn.gif)
|
|
Title |
Learning a Part-based Pedestrian Detector in Virtual World |
Type |
Journal Article |
|
Year |
2014 |
Publication |
IEEE Transactions on Intelligent Transportation Systems |
Abbreviated Journal |
TITS |
|
|
Volume |
15 |
Issue |
5 |
Pages |
2121-2131 |
|
|
Keywords ![sorted by Keywords field, ascending order (up)](http://refbase.cvc.uab.es/img/sort_asc.gif) |
Domain Adaptation; Pedestrian Detection; Virtual Worlds |
|
|
Abstract |
Detecting pedestrians with on-board vision systems is of paramount interest for assisting drivers to prevent vehicle-to-pedestrian accidents. The core of a pedestrian detector is its classification module, which aims at deciding if a given image window contains a pedestrian. Given the difficulty of this task, many classifiers have been proposed during the last fifteen years. Among them, the so-called (deformable) part-based classifiers including multi-view modeling are usually top ranked in accuracy. Training such classifiers is not trivial since a proper aspect clustering and spatial part alignment of the pedestrian training samples are crucial for obtaining an accurate classifier. In this paper, first we perform automatic aspect clustering and part alignment by using virtual-world pedestrians, i.e., human annotations are not required. Second, we use a mixture-of-parts approach that allows part sharing among different aspects. Third, these proposals are integrated in a learning framework which also allows to incorporate real-world training data to perform domain adaptation between virtual- and real-world cameras. Overall, the obtained results on four popular on-board datasets show that our proposal clearly outperforms the state-of-the-art deformable part-based detector known as latent SVM. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1931-0587 |
ISBN |
978-1-4673-2754-1 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.076 |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ XVL2014 |
Serial |
2433 |
|
Permanent link to this record |
|
|
|
|
Author |
Jose Luis Gomez; Gabriel Villalonga; Antonio Lopez |
![goto web page url](http://refbase.cvc.uab.es/img/www.gif)
|
|
Title |
Co-Training for Unsupervised Domain Adaptation of Semantic Segmentation Models |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Sensors – Special Issue on “Machine Learning for Autonomous Driving Perception and Prediction” |
Abbreviated Journal |
SENS |
|
|
Volume |
23 |
Issue |
2 |
Pages |
621 |
|
|
Keywords ![sorted by Keywords field, ascending order (up)](http://refbase.cvc.uab.es/img/sort_asc.gif) |
Domain adaptation; semi-supervised learning; Semantic segmentation; Autonomous driving |
|
|
Abstract |
Semantic image segmentation is a central and challenging task in autonomous driving, addressed by training deep models. Since this training draws to a curse of human-based image labeling, using synthetic images with automatically generated labels together with unlabeled real-world images is a promising alternative. This implies to address an unsupervised domain adaptation (UDA) problem. In this paper, we propose a new co-training procedure for synth-to-real UDA of semantic
segmentation models. It consists of a self-training stage, which provides two domain-adapted models, and a model collaboration loop for the mutual improvement of these two models. These models are then used to provide the final semantic segmentation labels (pseudo-labels) for the real-world images. The overall
procedure treats the deep models as black boxes and drives their collaboration at the level of pseudo-labeled target images, i.e., neither modifying loss functions is required, nor explicit feature alignment. We test our proposal on standard synthetic and real-world datasets for on-board semantic segmentation. Our
procedure shows improvements ranging from ∼13 to ∼26 mIoU points over baselines, so establishing new state-of-the-art results. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; no proj |
Approved |
no |
|
|
Call Number |
Admin @ si @ GVL2023 |
Serial |
3705 |
|
Permanent link to this record |
|
|
|
|
Author |
T. Mouats; N. Aouf; Angel Sappa; Cristhian A. Aguilera-Carrasco; Ricardo Toledo |
![goto web page (via DOI) doi](http://refbase.cvc.uab.es/img/doi.gif)
|
|
Title |
Multi-Spectral Stereo Odometry |
Type |
Journal Article |
|
Year |
2015 |
Publication |
IEEE Transactions on Intelligent Transportation Systems |
Abbreviated Journal |
TITS |
|
|
Volume |
16 |
Issue |
3 |
Pages |
1210-1224 |
|
|
Keywords ![sorted by Keywords field, ascending order (up)](http://refbase.cvc.uab.es/img/sort_asc.gif) |
Egomotion estimation; feature matching; multispectral odometry (MO); optical flow; stereo odometry; thermal imagery |
|
|
Abstract |
In this paper, we investigate the problem of visual odometry for ground vehicles based on the simultaneous utilization of multispectral cameras. It encompasses a stereo rig composed of an optical (visible) and thermal sensors. The novelty resides in the localization of the cameras as a stereo setup rather
than two monocular cameras of different spectrums. To the best of our knowledge, this is the first time such task is attempted. Log-Gabor wavelets at different orientations and scales are used to extract interest points from both images. These are then described using a combination of frequency and spatial information within the local neighborhood. Matches between the pairs of multimodal images are computed using the cosine similarity function based
on the descriptors. Pyramidal Lucas–Kanade tracker is also introduced to tackle temporal feature matching within challenging sequences of the data sets. The vehicle egomotion is computed from the triangulated 3-D points corresponding to the matched features. A windowed version of bundle adjustment incorporating
Gauss–Newton optimization is utilized for motion estimation. An outlier removal scheme is also included within the framework to deal with outliers. Multispectral data sets were generated and used as test bed. They correspond to real outdoor scenarios captured using our multimodal setup. Finally, detailed results validating the proposed strategy are illustrated. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1524-9050 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.055; 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @ MAS2015a |
Serial |
2533 |
|
Permanent link to this record |
|
|
|
|
Author |
Naveen Onkarappa; Angel Sappa |
![goto web page (via DOI) doi](http://refbase.cvc.uab.es/img/doi.gif)
|
|
Title |
Synthetic sequences and ground-truth flow field generation for algorithm validation |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Multimedia Tools and Applications |
Abbreviated Journal |
MTAP |
|
|
Volume |
74 |
Issue |
9 |
Pages |
3121-3135 |
|
|
Keywords ![sorted by Keywords field, ascending order (up)](http://refbase.cvc.uab.es/img/sort_asc.gif) |
Ground-truth optical flow; Synthetic sequence; Algorithm validation |
|
|
Abstract |
Research in computer vision is advancing by the availability of good datasets that help to improve algorithms, validate results and obtain comparative analysis. The datasets can be real or synthetic. For some of the computer vision problems such as optical flow it is not possible to obtain ground-truth optical flow with high accuracy in natural outdoor real scenarios directly by any sensor, although it is possible to obtain ground-truth data of real scenarios in a laboratory setup with limited motion. In this difficult situation computer graphics offers a viable option for creating realistic virtual scenarios. In the current work we present a framework to design virtual scenes and generate sequences as well as ground-truth flow fields. Particularly, we generate a dataset containing sequences of driving scenarios. The sequences in the dataset vary in different speeds of the on-board vision system, different road textures, complex motion of vehicle and independent moving vehicles in the scene. This dataset enables analyzing and adaptation of existing optical flow methods, and leads to invention of new approaches particularly for driver assistance systems. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer US |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1380-7501 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.055; 601.215; 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @ OnS2014b |
Serial |
2472 |
|
Permanent link to this record |
|
|
|
|
Author |
Katerine Diaz; Aura Hernandez-Sabate; Antonio Lopez |
![download PDF file pdf](http://refbase.cvc.uab.es/img/file_PDF.gif)
![find record details (via OpenURL) openurl](http://refbase.cvc.uab.es/img/xref.gif)
|
|
Title |
A reduced feature set for driver head pose estimation |
Type |
Journal Article |
|
Year |
2016 |
Publication |
Applied Soft Computing |
Abbreviated Journal |
ASOC |
|
|
Volume |
45 |
Issue |
|
Pages |
98-107 |
|
|
Keywords ![sorted by Keywords field, ascending order (up)](http://refbase.cvc.uab.es/img/sort_asc.gif) |
Head pose estimation; driving performance evaluation; subspace based methods; linear regression |
|
|
Abstract |
Evaluation of driving performance is of utmost importance in order to reduce road accident rate. Since driving ability includes visual-spatial and operational attention, among others, head pose estimation of the driver is a crucial indicator of driving performance. This paper proposes a new automatic method for coarse and fine head's yaw angle estimation of the driver. We rely on a set of geometric features computed from just three representative facial keypoints, namely the center of the eyes and the nose tip. With these geometric features, our method combines two manifold embedding methods and a linear regression one. In addition, the method has a confidence mechanism to decide if the classification of a sample is not reliable. The approach has been tested using the CMU-PIE dataset and our own driver dataset. Despite the very few facial keypoints required, the results are comparable to the state-of-the-art techniques. The low computational cost of the method and its robustness makes feasible to integrate it in massive consume devices as a real time application. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.085; 600.076;;IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ DHL2016 |
Serial |
2760 |
|
Permanent link to this record |
|
|
|
|
Author |
Katerine Diaz; Jesus Martinez del Rincon; Aura Hernandez-Sabate; Debora Gil |
![download PDF file pdf](http://refbase.cvc.uab.es/img/file_PDF.gif)
![find record details (via OpenURL) openurl](http://refbase.cvc.uab.es/img/xref.gif)
|
|
Title |
Continuous head pose estimation using manifold subspace embedding and multivariate regression |
Type |
Journal Article |
|
Year |
2018 |
Publication |
IEEE Access |
Abbreviated Journal |
ACCESS |
|
|
Volume |
6 |
Issue |
|
Pages |
18325 - 18334 |
|
|
Keywords ![sorted by Keywords field, ascending order (up)](http://refbase.cvc.uab.es/img/sort_asc.gif) |
Head Pose estimation; HOG features; Generalized Discriminative Common Vectors; B-splines; Multiple linear regression |
|
|
Abstract |
In this paper, a continuous head pose estimation system is proposed to estimate yaw and pitch head angles from raw facial images. Our approach is based on manifold learningbased methods, due to their promising generalization properties shown for face modelling from images. The method combines histograms of oriented gradients, generalized discriminative common vectors and continuous local regression to achieve successful performance. Our proposal was tested on multiple standard face datasets, as well as in a realistic scenario. Results show a considerable performance improvement and a higher consistence of our model in comparison with other state-of-art methods, with angular errors varying between 9 and 17 degrees. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2169-3536 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.118;IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ DMH2018b |
Serial |
3091 |
|
Permanent link to this record |