|
Records |
Links |
|
Author |
Mohammad Rouhani; Angel Sappa; E. Boyer |
|
|
Title |
Implicit B-Spline Surface Reconstruction |
Type |
Journal Article |
|
Year |
2015 |
Publication |
IEEE Transactions on Image Processing |
Abbreviated Journal |
TIP |
|
|
Volume |
24 |
Issue |
1 |
Pages |
22 - 32 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents a fast and flexible curve, and surface reconstruction technique based on implicit B-spline. This representation does not require any parameterization and it is locally supported. This fact has been exploited in this paper to propose a reconstruction technique through solving a sparse system of equations. This method is further accelerated to reduce the dimension to the active control lattice. Moreover, the surface smoothness and user interaction are allowed for controlling the surface. Finally, a novel weighting technique has been introduced in order to blend small patches and smooth them in the overlapping regions. The whole framework is very fast and efficient and can handle large cloud of points with very low computational cost. The experimental results show the flexibility and accuracy of the proposed algorithm to describe objects with complex topologies. Comparisons with other fitting methods highlight the superiority of the proposed approach in the presence of noise and missing data. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1057-7149 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RSB2015 |
Serial |
2541 |
|
Permanent link to this record |
|
|
|
|
Author |
Arnau Ramisa; Adriana Tapus; David Aldavert; Ricardo Toledo; Ramon Lopez de Mantaras |
|
|
Title |
Robust Vision-Based Localization using Combinations of Local Feature Regions Detectors |
Type |
Journal Article |
|
Year |
2009 |
Publication |
Autonomous Robots |
Abbreviated Journal |
AR |
|
|
Volume |
27 |
Issue |
4 |
Pages |
373-385 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents a vision-based approach for mobile robot localization. The model of the environment is topological. The new approach characterizes a place using a signature. This signature consists of a constellation of descriptors computed over different types of local affine covariant regions extracted from an omnidirectional image acquired rotating a standard camera with a pan-tilt unit. This type of representation permits a reliable and distinctive environment modelling. Our objectives were to validate the proposed method in indoor environments and, also, to find out if the combination of complementary local feature region detectors improves the localization versus using a single region detector. Our experimental results show that if false matches are effectively rejected, the combination of different covariant affine region detectors increases notably the performance of the approach by combining the different strengths of the individual detectors. In order to reduce the localization time, two strategies are evaluated: re-ranking the map nodes using a global similarity measure and using standard perspective view field of 45°.
In order to systematically test topological localization methods, another contribution proposed in this work is a novel method to see the degradation in localization performance as the robot moves away from the point where the original signature was acquired. This allows to know the robustness of the proposed signature. In order for this to be effective, it must be done in several, variated, environments that test all the possible situations in which the robot may have to perform localization. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0929-5593 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ RTA2009 |
Serial |
1245 |
|
Permanent link to this record |
|
|
|
|
Author |
Idoia Ruiz; Joan Serrat |
|
|
Title |
Hierarchical Novelty Detection for Traffic Sign Recognition |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Sensors |
Abbreviated Journal |
SENS |
|
|
Volume |
22 |
Issue |
12 |
Pages |
4389 |
|
|
Keywords |
Novelty detection; hierarchical classification; deep learning; traffic sign recognition; autonomous driving; computer vision |
|
|
Abstract |
Recent works have made significant progress in novelty detection, i.e., the problem of detecting samples of novel classes, never seen during training, while classifying those that belong to known classes. However, the only information this task provides about novel samples is that they are unknown. In this work, we leverage hierarchical taxonomies of classes to provide informative outputs for samples of novel classes. We predict their closest class in the taxonomy, i.e., its parent class. We address this problem, known as hierarchical novelty detection, by proposing a novel loss, namely Hierarchical Cosine Loss that is designed to learn class prototypes along with an embedding of discriminative features consistent with the taxonomy. We apply it to traffic sign recognition, where we predict the parent class semantics for new types of traffic signs. Our model beats state-of-the art approaches on two large scale traffic sign benchmarks, Mapillary Traffic Sign Dataset (MTSD) and Tsinghua-Tencent 100K (TT100K), and performs similarly on natural images benchmarks (AWA2, CUB). For TT100K and MTSD, our approach is able to detect novel samples at the correct nodes of the hierarchy with 81% and 36% of accuracy, respectively, at 80% known class accuracy. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.154 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RuS2022 |
Serial |
3684 |
|
Permanent link to this record |
|
|
|
|
Author |
Cesar de Souza; Adrien Gaidon; Yohann Cabon; Naila Murray; Antonio Lopez |
|
|
Title |
Generating Human Action Videos by Coupling 3D Game Engines and Probabilistic Graphical Models |
Type |
Journal Article |
|
Year |
2020 |
Publication |
International Journal of Computer Vision |
Abbreviated Journal |
IJCV |
|
|
Volume |
128 |
Issue |
|
Pages |
1505–1536 |
|
|
Keywords |
Procedural generation; Human action recognition; Synthetic data; Physics |
|
|
Abstract |
Deep video action recognition models have been highly successful in recent years but require large quantities of manually-annotated data, which are expensive and laborious to obtain. In this work, we investigate the generation of synthetic training data for video action recognition, as synthetic data have been successfully used to supervise models for a variety of other computer vision tasks. We propose an interpretable parametric generative model of human action videos that relies on procedural generation, physics models and other components of modern game engines. With this model we generate a diverse, realistic, and physically plausible dataset of human action videos, called PHAV for “Procedural Human Action Videos”. PHAV contains a total of 39,982 videos, with more than 1000 examples for each of 35 action categories. Our video generation approach is not limited to existing motion capture sequences: 14 of these 35 categories are procedurally-defined synthetic actions. In addition, each video is represented with 6 different data modalities, including RGB, optical flow and pixel-level semantic labels. These modalities are generated almost simultaneously using the Multiple Render Targets feature of modern GPUs. In order to leverage PHAV, we introduce a deep multi-task (i.e. that considers action classes from multiple datasets) representation learning architecture that is able to simultaneously learn from synthetic and real video datasets, even when their action categories differ. Our experiments on the UCF-101 and HMDB-51 benchmarks suggest that combining our large set of synthetic videos with small real-world datasets can boost recognition performance. Our approach also significantly outperforms video representations produced by fine-tuning state-of-the-art unsupervised generative models of videos. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.124; 600.118;CIC |
Approved |
no |
|
|
Call Number |
Admin @ si @ SGC2019 |
Serial |
3303 |
|
Permanent link to this record |
|
|
|
|
Author |
Joan Serrat; Felipe Lumbreras; Francisco Blanco; Manuel Valiente; Montserrat Lopez-Mesas |
|
|
Title |
myStone: A system for automatic kidney stone classification |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Expert Systems with Applications |
Abbreviated Journal |
ESA |
|
|
Volume |
89 |
Issue |
|
Pages |
41-51 |
|
|
Keywords |
Kidney stone; Optical device; Computer vision; Image classification |
|
|
Abstract |
Kidney stone formation is a common disease and the incidence rate is constantly increasing worldwide. It has been shown that the classification of kidney stones can lead to an important reduction of the recurrence rate. The classification of kidney stones by human experts on the basis of certain visual color and texture features is one of the most employed techniques. However, the knowledge of how to analyze kidney stones is not widespread, and the experts learn only after being trained on a large number of samples of the different classes. In this paper we describe a new device specifically designed for capturing images of expelled kidney stones, and a method to learn and apply the experts knowledge with regard to their classification. We show that with off the shelf components, a carefully selected set of features and a state of the art classifier it is possible to automate this difficult task to a good degree. We report results on a collection of 454 kidney stones, achieving an overall accuracy of 63% for a set of eight classes covering almost all of the kidney stones taxonomy. Moreover, for more than 80% of samples the real class is the first or the second most probable class according to the system, being then the patient recommendations for the two top classes similar. This is the first attempt towards the automatic visual classification of kidney stones, and based on the current results we foresee better accuracies with the increase of the dataset size. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; MSIAU; 603.046; 600.122; 600.118 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SLB2017 |
Serial |
3026 |
|
Permanent link to this record |
|
|
|
|
Author |
Joan Serrat; Felipe Lumbreras; Antonio Lopez |
|
|
Title |
Cost estimation of custom hoses from STL files and CAD drawings |
Type |
Journal Article |
|
Year |
2013 |
Publication |
Computers in Industry |
Abbreviated Journal |
COMPUTIND |
|
|
Volume |
64 |
Issue |
3 |
Pages |
299-309 |
|
|
Keywords |
On-line quotation; STL format; Regression; Gaussian process |
|
|
Abstract |
We present a method for the cost estimation of custom hoses from CAD models. They can come in two formats, which are easy to generate: a STL file or the image of a CAD drawing showing several orthogonal projections. The challenges in either cases are, first, to obtain from them a high level 3D description of the shape, and second, to learn a regression function for the prediction of the manufacturing time, based on geometric features of the reconstructed shape. The chosen description is the 3D line along the medial axis of the tube and the diameter of the circular sections along it. In order to extract it from STL files, we have adapted RANSAC, a robust parametric fitting algorithm. As for CAD drawing images, we propose a new technique for 3D reconstruction from data entered on any number of orthogonal projections. The regression function is a Gaussian process, which does not constrain the function to adopt any specific form and is governed by just two parameters. We assess the accuracy of the manufacturing time estimation by k-fold cross validation on 171 STL file models for which the time is provided by an expert. The results show the feasibility of the method, whereby the relative error for 80% of the testing samples is below 15%. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.057; 600.054; 605.203 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SLL2013; ADAS @ adas @ |
Serial |
2161 |
|
Permanent link to this record |
|
|
|
|
Author |
Joan Serrat; Felipe Lumbreras; Idoia Ruiz |
|
|
Title |
Learning to measure for preshipment garment sizing |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Measurement |
Abbreviated Journal |
MEASURE |
|
|
Volume |
130 |
Issue |
|
Pages |
327-339 |
|
|
Keywords |
Apparel; Computer vision; Structured prediction; Regression |
|
|
Abstract |
Clothing is still manually manufactured for the most part nowadays, resulting in discrepancies between nominal and real dimensions, and potentially ill-fitting garments. Hence, it is common in the apparel industry to manually perform measures at preshipment time. We present an automatic method to obtain such measures from a single image of a garment that speeds up this task. It is generic and extensible in the sense that it does not depend explicitly on the garment shape or type. Instead, it learns through a probabilistic graphical model to identify the different contour parts. Subsequently, a set of Lasso regressors, one per desired measure, can predict the actual values of the measures. We present results on a dataset of 130 images of jackets and 98 of pants, of varying sizes and styles, obtaining 1.17 and 1.22 cm of mean absolute error, respectively. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; MSIAU; 600.122; 600.118 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SLR2018 |
Serial |
3128 |
|
Permanent link to this record |
|
|
|
|
Author |
Xavier Soria; Angel Sappa; Riad I. Hammoud |
|
|
Title |
Wide-Band Color Imagery Restoration for RGB-NIR Single Sensor Images |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Sensors |
Abbreviated Journal |
SENS |
|
|
Volume |
18 |
Issue |
7 |
Pages |
2059 |
|
|
Keywords |
RGB-NIR sensor; multispectral imaging; deep learning; CNNs |
|
|
Abstract |
Multi-spectral RGB-NIR sensors have become ubiquitous in recent years. These sensors allow the visible and near-infrared spectral bands of a given scene to be captured at the same time. With such cameras, the acquired imagery has a compromised RGB color representation due to near-infrared bands (700–1100 nm) cross-talking with the visible bands (400–700 nm).
This paper proposes two deep learning-based architectures to recover the full RGB color images, thus removing the NIR information from the visible bands. The proposed approaches directly restore the high-resolution RGB image by means of convolutional neural networks. They are evaluated with several outdoor images; both architectures reach a similar performance when evaluated in different
scenarios and using different similarity metrics. Both of them improve the state of the art approaches. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; MSIAU; 600.086; 600.130; 600.122; 600.118 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SSH2018 |
Serial |
3145 |
|
Permanent link to this record |
|
|
|
|
Author |
Henry Velesaca; Gisel Bastidas-Guacho; Mohammad Rouhani; Angel Sappa |
|
|
Title |
Multimodal image registration techniques: a comprehensive survey |
Type |
Journal Article |
|
Year |
2024 |
Publication |
Multimedia Tools and Applications |
Abbreviated Journal |
MTAP |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This manuscript presents a review of state-of-the-art techniques proposed in the literature for multimodal image registration, addressing instances where images from different modalities need to be precisely aligned in the same reference system. This scenario arises when the images to be registered come from different modalities, among the visible and thermal spectral bands, 3D-RGB, or flash-no flash, or NIR-visible. The review spans different techniques from classical approaches to more modern ones based on deep learning, aiming to highlight the particularities required at each step in the registration pipeline when dealing with multimodal images. It is noteworthy that medical images are excluded from this review due to their specific characteristics, including the use of both active and passive sensors or the non-rigid nature of the body contained in the image. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MSIAU;ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ VBR2024 |
Serial |
3997 |
|
Permanent link to this record |
|
|
|
|
Author |
Gabriel Villalonga; Antonio Lopez |
|
|
Title |
Co-Training for On-Board Deep Object Detection |
Type |
Journal Article |
|
Year |
2020 |
Publication |
IEEE Access |
Abbreviated Journal |
ACCESS |
|
|
Volume |
|
Issue |
|
Pages |
194441 - 194456 |
|
|
Keywords |
|
|
|
Abstract |
Providing ground truth supervision to train visual models has been a bottleneck over the years, exacerbated by domain shifts which degenerate the performance of such models. This was the case when visual tasks relied on handcrafted features and shallow machine learning and, despite its unprecedented performance gains, the problem remains open within the deep learning paradigm due to its data-hungry nature. Best performing deep vision-based object detectors are trained in a supervised manner by relying on human-labeled bounding boxes which localize class instances (i.e. objects) within the training images. Thus, object detection is one of such tasks for which human labeling is a major bottleneck. In this article, we assess co-training as a semi-supervised learning method for self-labeling objects in unlabeled images, so reducing the human-labeling effort for developing deep object detectors. Our study pays special attention to a scenario involving domain shift; in particular, when we have automatically generated virtual-world images with object bounding boxes and we have real-world images which are unlabeled. Moreover, we are particularly interested in using co-training for deep object detection in the context of driver assistance systems and/or self-driving vehicles. Thus, using well-established datasets and protocols for object detection in these application contexts, we will show how co-training is a paradigm worth to pursue for alleviating object labeling, working both alone and together with task-agnostic domain adaptation. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.118 |
Approved |
no |
|
|
Call Number |
Admin @ si @ ViL2020 |
Serial |
3488 |
|
Permanent link to this record |